Vol. 111
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-13
A Tunable Diode-Based Reflective Analog Predistortion Linearizer for Microwave Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 111, 257-269, 2021
Abstract
Analog predistortion is an efficient method for improving the linearity of power amplifiers. This paper presents a simple and tunable analog predistortion linearizer with low insertion loss, capable of reducing the non-linearity effects of microwave power amplifiers. The linearizer employs Schottky diodes as a distortion generator and does not require any additional matching circuit. By controlling the DC bias of the diodes, various combinations of characteristics can be obtained; therefore, this structure can be used to match different device behaviors. Experimental validation using a εr = 3.38, 20-mil thick Rogers substrate at the center frequency of 2 GHz shows that the fabricated linearizer can provide up to 7.5 dB gain expansion. The fractional bandwidth and insertion loss of the linearizer are 10% and 1.7 dB, respectively. The simulated and measured results are in good agreement with each other. To illustrate an approach for compensating the limited phase characteristics of the presented structure, the design and simulation of a dual-branch linearizer utilizing the reflective Schottky diode predistortion linearizer as a nonlinear unit are also presented.
Citation
Parsa Tahbazalli, and Hossein Shamsi, "A Tunable Diode-Based Reflective Analog Predistortion Linearizer for Microwave Power Amplifiers," Progress In Electromagnetics Research C, Vol. 111, 257-269, 2021.
doi:10.2528/PIERC21021604
References

1. Katz, A., J. Wood, and D. Chokola, "The evolution of PA linearization: From classic feedforward and feedback through analog and digital predistortion," IEEE Microwave Magazine, Vol. 17, No. 2, 32-40, Feb. 2016.
doi:10.1109/MMM.2015.2498079

2. Andreoli, S., H. G. McClure, P. Banelli, and S. Cacopardi, "Digital linearizer for RF amplifiers," IEEE Transactions on Broadcasting, Vol. 43, No. 1, 12-19, Mar. 1997.
doi:10.1109/11.566819

3. Vassiliou, I., K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J. C. Rudell, A. Yamanaka, S. Bouras, and I. Bouras, "A single-chip digitally calibrated 5.15 ∼ 5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN," IEEE Journal of Solid-State Circuits, Vol. 38, No. 12, 2221-2231, Dec. 2003.
doi:10.1109/JSSC.2003.819086

4. Grebennikov, A. and S. Bulja, "High-efficiency doherty power amplifiers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3190-3219, Dec. 2012.
doi:10.1109/JPROC.2012.2211091

5. Katz, A., "Linearization: Reducing distortion in power amplifiers," IEEE Microwave Magazine, Vol. 2, No. 4, 37-49, 2001.
doi:10.1109/6668.969934

6. Gokceoglu, A., A. ghadam, and M. Valkama, "Steady-state performance analysis and step-size selection for LMS-adaptive wideband feedforward power amplifier linearizer," IEEE Transactions on Signal Processing, Vol. 60, No. 1, 82-99, Jan. 2012.
doi:10.1109/TSP.2011.2169254

7. Ghadam, A., S. Burglechner, A. H. Gokceoglu, M. Valkama, and A. Springer, "Implementation and performance of DSP-oriented feedforward power amplifier linearizer," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, No. 2, 409-425, Feb. 2012.
doi:10.1109/TCSI.2011.2163890

8. Pipilos, S., Y. Papananos, N. Naskas, M. Zervakis, J. Jongsma, T. Gschier, N. Wilson, J. Gibbins, B. Carter, and G. Dann, "A transmitter IC for TETRA systems based on a Cartesian feedback loop linearization technique," IEEE Journal of Solid-State Circuits, Vol. 40, No. 3, 707-718, Mar. 2005.
doi:10.1109/JSSC.2005.843633

9. Kim, J. H. and C. S. Park, "A feedback technique to compensate for AM-PM distortion in linear CMOS class-F power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 10, 725-727, Oct. 2014.
doi:10.1109/LMWC.2014.2341040

10. Kang, S., E.-T. Sung, and S. Hong, "Dynamic feedback linearizer of RF CMOS power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 915-917, Oct. 2018.
doi:10.1109/LMWC.2018.2861881

11. Abbasnezhad, F., M. Tayarani, A. Abrishamifar, and V. Nayyeri, "A simple and adjustable technique for effective linearization of power amplifiers using harmonic injection," IEEE Access, Vol. 9, 37287-37296, Mar. 2021.
doi:10.1109/ACCESS.2021.3063286

12. Yamauchi, K., K. Mori, M. Nakayama, Y. Mitsui, and T. Takagi, "A microwave miniaturized linearizer using a parallel diode with a bias feed resistance," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2431-2435, Dec. 1997.
doi:10.1109/22.643856

13. Deng, H., D. Zhang, D. Lv, D. Zhou, and Y. Zhang, "A tunable reflective analog predistorter based on variable impedance matching network," AEU — International Journal of Electronics and Communications, Vol. 98, 139-143, Jan. 2019.
doi:10.1016/j.aeue.2018.11.012

14. Chen, X., D. Zhou, J. Xu, and L. Yang, "Predistortion linearization of a Ku-band TWTA for communication applications," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Mar. 2013.

15. Zhou, R., X. Xie, B. Yan, and S. Li, "A novel diode-based predistortion linearizer for Ka-band power amplifier," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2012.

16. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609

17. Bian, C., D. Zhang, H. Deng, Q. Liu, D. Lv, Y. Zhang, and D. Zhou, "Complete analysis and design for a Q/V band (46–52 GHz) wideband analog predistorter," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 2, Dec. 2020.

18. Bera, S. C., P. S. Bhardhwaj, R. V. Singh, and V. K. Garg, "A diode linearizer for microwave power amplifiers," Microwave Journal, Vol. 46, No. 11, 102-113, Nov. 2003.

19. Hu, X., G. Wang, Z.-C. Wang, and J.-R. Luo, "Predistortion linearization of an X-band TWTA for communications applications," IEEE Transactions on Electron Devices, Vol. 58, No. 6, 1768-1774, Jun. 2011.
doi:10.1109/TED.2011.2128321

20. Deng, H., D. Zhang, D. Lv, D. Zhou, and Y. Zhang, "Analog predistortion linearizer with independently tunable gain and phase conversions for Ka-band TWTA," IEEE Transactions on Electron Devices, Vol. 66, No. 3, 1533-1539, Mar. 2019.
doi:10.1109/TED.2018.2890696

21. Tripathi, G. C. and M. Rawat, "RFin-RFout linearizer system design for satellite communication," IEEE Transactions on Electron Devices, Vol. 65, No. 6, 2378-2384, Jun. 2018.
doi:10.1109/TED.2018.2791558

22. Guan, N., N. Wu, and H. Wang, "Digital predistortion of wideband power amplifier with single undersampling ADC," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 11, 1016-1018, Nov. 2017.
doi:10.1109/LMWC.2017.2750059

23. Liu, X., Q. Zhang, W. Chen, H. Feng, L. Chen, F. M. Ghannouchi, and Z. Feng, "Beam-oriented digital predistortion for 5G massive MIMO hybrid beamforming transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3419-3432, Jul. 2018.
doi:10.1109/TMTT.2018.2830772

24. Zhao, J., C. Yu, J. Yu, Y. Liu, and S. Li, "A robust augmented combination of digital predistortion and crest factor reduction for RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 57, 181-191, 2015.
doi:10.2528/PIERC15032306

25. Hu, X., Z. Liu, W. Wang, M. Helaoui, and F. M. Ghannouchi, "Low-feedback sampling rate digital predistortion using deep neural network for wideband wireless transmitters," IEEE Transactions on Communications, Vol. 68, No. 4, 2621-2633, Apr. 2020.
doi:10.1109/TCOMM.2020.2966718

26. Ciminski, A. S., "Neural network based adaptable control method for linearization of high power amplifiers," AEU — International Journal of Electronics and Communications, Vol. 59, No. 4, 239-243, Jun. 2005.
doi:10.1016/j.aeue.2004.11.026

27. Rawat, M., K. Rawat, and F. M. Ghannouchi, "Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 95-104, Jan. 2010.
doi:10.1109/TMTT.2009.2036334

28. GraciaSaez, R. and N. Medrano Marques, "RF power amplifier linearization in professional mobile radio communications using artificial neural networks," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 3060-3070, Apr. 2019.
doi:10.1109/TIE.2018.2842780

29. Pozar, D. M., Microwave Engineering, Wiley, 2005.

30. Lopez, D., J.-F. Villemazet, D. Geffroy, J.-L. Cazaux, G. Mouchon, J. Maynard, M. Perrel, and M. Amarouali, "Ka band power limiter for satellite channel amplifier," 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Nov. 2009.

31. Bera, S. C., K. Basak, V. K. Jain, R. V. Singh, and V. K. Garg, "Schottky diode-based microwave limiter with adjustable threshold power level," Microwave and Optical Technology Letters, Vol. 52, No. 7, 1671-1673, Jul. 2010.
doi:10.1002/mop.25255

32. Maas, S. A., Nonlinear Microwave Circuit, Artech House, 1988.