Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-23
A Dynamic Wireless Power Transfer Using Metamaterial-Based Transmitter
By
Progress In Electromagnetics Research C, Vol. 110, 151-165, 2021
Abstract
Dynamic Wireless Power Transmission has attracted attention in the research area due to its safety, convenience, and automation. However, the major limitation in achieving this vision is its working distance. In this paper, the metamaterial (MM) based transmitter WPT with zero permeability is presented and compared with an inductive WPT system. The comparative simulations and experimental investigations validate the effectiveness of the proposed design. The system efficiencies are determined at the distances of 8 cm, 11 cm, and 16 cm between the transmitter and receiver (SAE J2954) with an operating frequency of 20 kHz. The power transfer efficiency (PTE) of the WPT system using an inductive transmitter and the WPT system using an MM-based transmitter is shown as 85/87%, 65/70%, 45/65%, respectively. The PTE of the MM-based transmitter is 64% higher than an inductive transmitter at a 16 cm distance. The robot without a battery moves dynamically along the track with the MM-based transmitter underneath. The results show that the power transfer efficiency of the MM-based transmitter is considerably higher than that of the inductive transmitter.
Citation
Jiropast Suakaew, and Wanchai Pijitrojana, "A Dynamic Wireless Power Transfer Using Metamaterial-Based Transmitter," Progress In Electromagnetics Research C, Vol. 110, 151-165, 2021.
doi:10.2528/PIERC21012002
References

1. Kim, C.-G., D.-H. Seo, J.-S. You, J.-H. Park, and B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Trans. Ind. Electron., Vol. 48, No. 6, 1238-1247, Dec. 2001.
doi:10.1109/41.969404

2. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Trans. Consum. Electron., Vol. 56, No. 1, 247-253, Feb. 2010.
doi:10.1109/TCE.2010.5439152

3. Shiba, K., A. Morimasa, and H. Hirano, "Design and development of low-loss transformer for powering small implantable medical devices," IEEE Trans. Biomed. Circuits Syst., Vol. 4, No. 2, 77-85, Apr. 2010.
doi:10.1109/TBCAS.2009.2034364

4. Wang, C.-S., O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., Vol. 52, No. 5, 1308-1314, Oct. 2005.
doi:10.1109/TIE.2005.855672

5. Madawala, U. K. and D. J. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Trans. Ind. Electron., Vol. 58, No. 10, 4789-4796, Oct. 2011.
doi:10.1109/TIE.2011.2114312

6. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 59, No. 9, 2065-2074, Sep. 2012.
doi:10.1109/TCSI.2011.2180446

7. Hui, S. Y. R., W. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, Sep. 2014.
doi:10.1109/TPEL.2013.2249670

8. Lee, K. and S. H. Chae, "Power transfer efficiency analysis of intermediate-resonator for wireless power transfer," IEEE Trans. Power Electron., Vol. 8993, 1-1, Apr. 2017.

9. Zhong, W. X., et al., "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, Feb. 2015.
doi:10.1109/TPEL.2014.2312020

10. Kim, S.-H., Y.-S. Lim, and S.-J. Lee, "Magnetic resonant coupling based wireless power transfer system with in-band communication “Gangwon-do in Korea”," Department of Electronics Engineering, Ewha Woman’s Univ. Journal of Semiconductor Technology and Science, Vol. 13, No. 6, Dec. 2013.

11. Rittiplang, A. and W. Pijitrojana, "A low-frequency wireless power transfer using parallel resonance under impedance matching," Applied Mechanics and Material, Vol. 781, 410-413, Aug. 2015.
doi:10.4028/www.scientific.net/AMM.781.410

12. Rittiplang, A. and W. Pijitrojana, "Low-frequency wireless power transfer using optimal primary capacitance of parallel resonance for impedance matching," IJIREEICE, Vol. 4, No. 1, Jan. 2016.
doi:10.17148/IJIREEICE.2016.4113

13. Rittiplang, A., W. Pijitrojana, and K. Daroj, "Low-frequency wireless power transfers using modified parallel resonance matching at complex load," KKU Engineering Journal, 184-188, Oct./Dec. 2016.

14. Rittiplang, A. and W. Pijitrojana, "Development of in-motion wireless power transfer test bed platform for wireless electric vehicle charger," Thammasat International Journal of Science and Technology, Vol. 22, No. 2, 2017.

15. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proceedings of the IEEE, Vol. 101, No. 6, 1359-1368, Jun. 2013.
doi:10.1109/JPROC.2013.2245611

16. Li, L., H. Liu, H. Zhang, and W. Xue, "Efficient wireless power transfer system integrating with metasurface for biological applications," IEEE Trans. Ind. Electron., Vol. 65, No. 4, 3230-3239, Apr. 2018.
doi:10.1109/TIE.2017.2756580

17. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms," Europhysics Letters, EPL, Vol. 109, No. 6, 68005, Mar. 2015.
doi:10.1209/0295-5075/109/68005

18. Rajagopalan, A., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 947-955, Apr. 2014.
doi:10.1109/TMTT.2014.2304927

19. Das, R., A. Basir, and H. Yoo, "A metamaterial-coupled wireless power transfer system based on cubic high-dielectric resonators," IEEE Trans. Ind. Electron., Vol. 66, No. 9, 7397-7406, Sep. 2019.
doi:10.1109/TIE.2018.2879310

20. Wang, X., Y. Wang, Y. Hu, Y. He, and Z. Yan, "Analysis of wireless power transfer using superconducting metamaterials," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, Mar. 2019.

21. Lu, C., X. Huang, C. Rong, Z. Hu, J. Chen, X. Tao, S. Wang, B. Wei, and M. Liu, "Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial," IET Journals, Vol. 2019, No. 16, 1812-1815, 2019.

22. Cho, Y., S. Lee, D.-H. Kim, H. Kim, C. Song, S. Kong, J. Park, C. Seo, and J. Kim, "Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 60, No. 4, 1001-1009, Aug. 2018.

23. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," Proc. IEEE Int. Conf. Wireless Inf. Technol. Syst., Honululu, HI, USA, Aug. 28– Sep. 3, 2010.

24. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, 205114, 2011.
doi:10.1103/PhysRevB.83.205114

25. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Wireless power transfer with metamaterials," Proc. Eur. Conf. Antennas Propag., 3905-3908, Rome, Italy, Apr. 11–15, 2011.

26. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, No. 3, 191-202, Aug. 7, 2006.
doi:10.1080/00107510410001667434

27. Cho, Y., et al., "Hybrid metamaterial with zero and negative permeability to enhance efficiency in wireless power transfer system," IEEE Wireless Power Transfer Conference (WPTC), 1-3, Aveiro, 2016.

28. Cho, Y., S. Lee, D.-H. Kim, H. Kim, C. Song, S. Kong, J. Park, C. Seo, and J. Kim, "Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 60, No. 4, 1001-1009, Aug. 2018.

29. Cho, Y., J. J. Kim, D.-H. Kim, S. Lee, H. Kim, C. Song, S. Kong, H. Kim, C. Seo, S. Ahn, and J. Kim, "Thin PCB-type metamaterials for improved efficiency and reduced emf leakage in wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 353-364, Feb. 2016.

30. Duan, G., X. Zhao, S. W. Anderson, et al. "Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials," Communication Physics, Vol. 2, 35, 2019.
doi:10.1038/s42005-019-0135-7

31. Luukkonen, O., S. I. Maslovski, and S. A. Tretyakov, "A stepwise Nicolson-Ross-Weir-based material parameter extraction method," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1295-1298, 2011.
doi:10.1109/LAWP.2011.2175897

32. Bahl, J., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.

33. Lee, K., Z. Pantic, and S. M. Lukic, "Reflexive field containment in dynamic inductive power transfer systems," IEEE Trans. Power Electron., Vol. 29, No. 9, 4592-4602, Sep. 2014.
doi:10.1109/TPEL.2013.2287262

34. Zhang, Z., A. Georgiadis, and C. Cecati, "Wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 2, Feb. 2019.

35. Chen, Y., M. Kung, and K. Lin, "Investigation of hybrid metamaterial for enhancing the efficiency of wireless power transfer systems," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1093-1094, San Diego, CA, 2017.

36. Senior, D. E. and P. V. Parimi, "Planar wireless power transfer system with embedded magnetic metamaterial resonators," IEEE International Symposium on Antennas and Propagation (APSURSI), 607-608, Fajardo, 2016.

37. Abdolkhani, A. and E. Coca, "Fundamentals of inductively coupled wireless power transfer systems," Wireless Power Transfer — Fundamentals and Technologies, 3-26, 2016.

38. Zhong, W. X., et al., "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, Feb. 2015.
doi:10.1109/TPEL.2014.2312020

39. Lee, E., X. Thai, S. Choi, C. Rim, and J. Huh, "Impedance transformers for compact and robust coupled magnetic resonance systems," IEEE Energy Convers. Congr. Expo., 2239-2244, Denver, USA, 2013.

40. Assawaworrarit, S. and S. Fan, "Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity-time-symmetric circuit," Nature Electronics, Vol. 3, 273-279, 2020.
doi:10.1038/s41928-020-0399-7