Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-22
Metasurface Superstrate Inspired Printed Monopole Antenna for RF Energy Harvesting Application
By
Progress In Electromagnetics Research C, Vol. 110, 119-133, 2021
Abstract
In this paper, a metasurface superstrate-inspired broadband circularly polarized (CP) printed monopole antenna is investigated. To achieve broadband circular polarization and directional radiation pattern, a circle-shaped monopole radiator with asymmetrical staircased partial ground loaded with metasurface is introduced. It is fed by a 50-Ω microstrip feedline and is fabricated on an FR-4 substrate, having overall dimension of 1.25λ0 × 1.66λ0 × 0.02λ0 at f = 5 GHz. The metasurface antenna exhibits a measured impedance bandwidth of 5 GHz (1.85-6.85 GHz, 114.9%), axial bandwidth of 910 MHz (4.09-5 GHz, 20.02%) with average CP antenna gain of 6.82 dBic, directional radiation pattern and consistent antenna efficiency of > 85.65% in the desired frequency bands. Time domain characteristics i.e. group delay is obtained within 2 ns in the operating frequency bands. Due to its design process and attainment of broadband CP, higher antenna gain and directional radiation pattern in the broadside direction, it is extended for RF energy harvesting. The proposed metasurface antenna is integrated with a rectifier circuit, where RF-to-DC conversion efficiency (η0) and DC output voltage (Vout) are analyzed by using ADS circuit solver.
Citation
Bikash Ranjan Behera, Priya R. Meher, and Sanjeev Kumar Mishra, "Metasurface Superstrate Inspired Printed Monopole Antenna for RF Energy Harvesting Application," Progress In Electromagnetics Research C, Vol. 110, 119-133, 2021.
doi:10.2528/PIERC21011405
References

1. Behera, B. R., P. R. Meher, and S. K. Mishra, "Microwave antennas — An intrinsic part of RF energy harvesting systems: A contingent study about its design methodologies and state-of-art technologies in current scenario," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22148, 1-27, 2020.
doi:10.1002/mmce.22148

2. Maybell, M. J., "A polarization basics diagram," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 130-135, 2019.
doi:10.1109/MAP.2018.2883054

3. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Transactions on Education, Vol. 46, No. 3, 313-318, 2003.
doi:10.1109/TE.2003.813519

4. Mishra, S. K., et al., "A compact dual-band fork-shaped monopole antenna for Bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011.
doi:10.1109/LAWP.2011.2159572

5. Liang, J., et al., "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598

6. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901

7. Mathur, M., A. Agrawal, G. Singh, and S. K. Bhatnagar, "A compact coplanar waveguide fed wideband monopole antenna for RF energy harvesting applications," Progress In Electromagnetics Research M, Vol. 63, 175-184, 2018.
doi:10.2528/PIERM17101201

8. Dastranj, A., "Very small planar broadband monopole antenna with hybrid trapezoidal-elliptical radiator," IET Microwaves, Antennas & Propagation, Vol. 61, No. 4, 542-547, 2017.
doi:10.1049/iet-map.2016.0701

9. Elsheakh, D. M. and E. A. Abdallah, "Ultra-wide-bandwidth (UWB) microstrip monopole antenna using split ring resonator (SRR) structure," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 123-132, 2018.
doi:10.1017/S1759078717001131

10. Ray, K. P. and Y. Ranga, "Ultrawideband printed elliptical monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1189-1192, 2007.
doi:10.1109/TAP.2007.893408

11. Ghosh, S. and A. Chakrabarty, "Dual band circularly polarized monopole antenna design for RF energy harvesting," IETE Journal of Research, Vol. 62, No. 1, 9-16, 2016.
doi:10.1080/03772063.2015.1076359

12. Yue, T., Z. H. Jiang, and D. H. Werner, "Compact, wideband antennas enabled by interdigitated capacitor-loaded metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1595-1606, 2016.
doi:10.1109/TAP.2016.2535499

13. Wu, Z., et al., "Metasurface superstrate antenna with wideband circular polarization for satellite communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 374-377, 2016.
doi:10.1109/LAWP.2015.2446505

14. Chen, Q., et al., "Wideband and low axial ratio circularly polarized antenna using AMC-based structure polarization rotation reflective surface," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1058-1064, 2018.
doi:10.1017/S1759078718000958

15. Yang, W., et al., "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130

16. Chair, R., et al., "Aperture fed wideband circularly polarized rectangular stair shaped dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1350-1352, 2006.
doi:10.1109/TAP.2006.872665

17. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475

18. Altaf, A., et al., "Circularly polarized spidron fractal dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1806-1809, 2015.
doi:10.1109/LAWP.2015.2427373

19. Kumar, R., S. R. Thummaluru, and R. K. Chaudhary, "Improvements in Wi-MAX reception: A new dual-mode wideband circularly polarized dielectric resonator antenna," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 41-49, 2019.
doi:10.1109/MAP.2018.2883013

20. Divakaran, S. K., D. D. Krishna, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21633, 1-15, 2019.
doi:10.1002/mmce.21633

21. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, 2020.
doi:10.1109/MAP.2020.3012872

22. Behera, B. R., et al., "A compact broadband circularly polarized printed monopole antenna using twin parasitic conducting strips and rectangular metasurface for RF energy harvesting application," AEU --- International Journal of Electronics and Communications, Vol. 120, No. 15233, 1-10, 2020.

23. Harrington, R. F., Time-harmonic Electromagnetic Fields, Wiley-IEEE Press, 2001.
doi:10.1109/9780470546710

24. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3325-3329, 2015.
doi:10.1109/TAP.2015.2429741

25. Kirov, G. S., "Evaluation of the frequency bandwidth and gain properties of antennas: Characteristics of circularly polarized microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 62, No. 3, 74-82, 2020.
doi:10.1109/MAP.2020.2976912

26. Liu, W. E. I., et al., "Miniaturized wideband metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7345-7349, 2017.
doi:10.1109/TAP.2017.2761550

27. Wang, J., et al., "Broadband CPW-fed aperture coupled metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 517-520, 2019.
doi:10.1109/LAWP.2019.2895618

28. Rajanna, P. K., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, 2020.
doi:10.1017/S1759078719001119

29. Din, N. M., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002

30. Liu, R., et al., "Metasurface: Enhancing gain of antenna and energy harvesting system design," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 2, e22053, 1-11, 2020.