Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-24
A Vibration Energy Recovery Method with Application to a Semi-Active Suspension System
By
Progress In Electromagnetics Research C, Vol. 110, 167-179, 2021
Abstract
This paper proposes a method to recover vibration energy from a semi-active suspension system which is composed by a magneto rheological damper in parallel with a power regeneration mechanism. Central to the concept is a parity-time-symmetric (PT symmetric) circuit that is capable of providing high efficiency transmission of power and minimizing electromagnetic damping force of the power regeneration mechanism. Simulation results are presented to demonstrate the electromagnetic damping force of the power regeneration mechanism having little impact on suspension system and verify the possibility of energy recovery. The proposed control strategy pays close attention to inertial force of the power regeneration mechanism which produces indicator diagram hysteresis. To evaluate the performance brought about by the proposed method, the semi-active suspension utilizing the PT symmetric circuit is compared to the load resistance circuit. And the semi-active suspension system is implemented on a quarter car test bench to demonstrate its feasibility on a typical sine road surface.
Citation
Yiquan Sun, Qingzhang Chen, Wenye Wu, and Linlin Gao, "A Vibration Energy Recovery Method with Application to a Semi-Active Suspension System," Progress In Electromagnetics Research C, Vol. 110, 167-179, 2021.
doi:10.2528/PIERC21010804
References

1. Amer, N. H., R. Ramli, H. M. Isa, W. N. L. Mahadi, and M. A. Z. Adidin, "A review of energy regeneration capabilities in controllable suspension for passenger’s car," EEST Part A: Energy Science and Research, Vol. 30, No. 1, 143-145, 2012.

2. Zheng, X., F. Yu, and Y. Zhang, "A novel energy-regenerative active suspension for vehicles," Journal of Shanghai Jiaotong University (Science), Vol. 02, No. 02, 184-188, 2008.
doi:10.1007/s12204-008-0184-7

3. Montazeri-Gh, M. and M. Soleymani, "Investigation of the energy regeneration of active suspension system in hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 57, 918-925, 2010.
doi:10.1109/TIE.2009.2034682

4. Martins, I., M. Esteves, F. Pina Da Silva, and P. Verdelho, "Electromagnetic hybrid active-passive vehicle suspension system," IEEE 49th Veh. Tech. Conf., 2273-2277, 1999.

5. Paz, O. D., Design and performance of electric shock absorber, MSc in Electrical Engineering Louisiana State University, 2004.

6. Okada, Y. and H. Harada, "Regenerative control of active vibration damper and suspension systems," 35th IEEE Decis. Control, Vol. 4, 4715-4720, 1996.
doi:10.1109/CDC.1996.577622

7. Nakano, K., Y. Suda, and S. Nakadai, "Self-powered active vibration control using a single electric actuator," J. Sound Vib., Vol. 260, 213-235, 2003.
doi:10.1016/S0022-460X(02)00980-X

8. Lin, B. and X. Su, "Fault-tolerant controller design for active suspension system with proportional differential sliding mode observer," International Journal of Control, Automation and Systems, Vol. 17, No. 7, 1751-1761, 2019.
doi:10.1007/s12555-018-0630-8

9. Majdoub, K. E., F. Giri, and F.-Z. Chaoui, "Adaptive backstepping control design for semi-active suspension of half-vehicle with magnetorheological damper," IEEE/CAA Journal of Automatica Sinica, Vol. 8, No. 03, 582-596, 2021.
doi:10.1109/JAS.2020.1003521

10. Cho, Y., B. S. Song, and K. Yi, "A road-adaptive control law for semi-active suspensions," KSME International Journal, Vol. 13, No. 10, 667-676, 1999.
doi:10.1007/BF03184446

11. Peng, Z., Research on vibration control and energy consumption of electromagnetic suspension system for tracked vehicle, Doctoral Dissertation, 1–5, College of Machinery, Beijing, China, December 2014.

12. Hu, P., Research on the vibration control and energy-regenerative technologies of parallel composite electromagnetic suspension, Doctoral Dissertation, 102–105, College of Machinery, Beijing, China, December 2018.

13. Sharipov, G. M., D. S. Paraforos, and H. W. Griepentrog, "Implementation of a magnetorheological damper on a no-till seeding assembly for optimising seeding depth," Computers & Electronics in Agriculture, Vol. 150, 465-475, 2018.
doi:10.1016/j.compag.2018.05.024

14. Wang, X., Research on the design and control of the energy-regenerative electromagnetic suspension system, Doctoral Dissertation, 43–45, College of Machinery, Beijing, China, December 2018.

15. Bender, C. M., D. C. Brody, and H. F. Jones, "Complex extension of quantum mechanics," Phys. Rev. Lett., Vol. 89, 270401, 2002.
doi:10.1103/PhysRevLett.89.270401

16. Feng, L., Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science, Vol. 346, 972-975, 2014.
doi:10.1126/science.1258479

17. Sid, A., X. F. Yu, and S. H. Fan, "Robust wireless power transfer using a nonlinear parity-timesymmetric circuit," Nature, Vol. 546, 387-390, 2017.

18. Nakano, M., J. Yang, S. Sun, A. Totsuka, and A. Fukukita, "Development and damping properties of a seismic linear motion damper with MR fluid porous composite rotary brake," Smart Materials and Structures, Vol. 29, No. 11, 115043, 2020.
doi:10.1088/1361-665X/abb645

19. Zhang, H., H. Winner, and W. Li, "Comparison between skyhook and minimax control strategies for semi-active suspension system," WASET, 624-627, 2009.

20. Zhang, J., Z. Peng, and L. Zhang, "A review on energy-regenerative suspension systems for vehicles," The World Congress on Engineering (WCE 2013), Vol. 3, 1889-1892, 2013.

21. Wang, X., J. Zhang, and Y. Liu, "An improved state feedback H∞control method within a finite frequency domain," Journal of Vibration and Shock, Vol. 38, No. 5, 135-140, 2019.

22. Chen, Z. and G. Liu, "Pedestrian-induced vibration theory and dynamic design of footbridges," Engineering Mechanics, Vol. 26, 148-152, 2009.

23. Standards, I., Human response to vibration — Measuring instrumentation, BS EN ISO 8041-2005, 2005.