Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-20
Gain Flattening of Wideband FPC Antenna Using Elliptical and Rectangular Slotted AMC Layers
By
Progress In Electromagnetics Research C, Vol. 110, 81-89, 2021
Abstract
In this paper, the gain flattening of a wideband Fabry-Perot cavity (FPC) antenna, using truncated partially reflecting surface (PRS) and slotted elliptical and rectangular shape artificial magnetic conductor (AMC) layers is proposed. FPC is fed using a metal plated microstrip antenna (MSA) which comprises three layers-elliptical slotted rectangular AMC-I layer, truncated PRS layer, and rectangular slotted elliptical AMC-II layer. AMC-II layer is designed complementary to AMC-I layer to obtain gain variation < 1dB over wide frequency band. Elliptical shaped AMC-II and truncated PRS reduce the reflected fields towards ground and thus improve front to back lobe ratio (F/B) and side lobe level (SLL). These layers resonate at higher frequency and thus reduce gain variation and couple electromagnetically with MSA and AMC-I layer to provide wide bandwidth (BW). The proposed antenna provides S11 < -10 dB, 17.2 dBi peak gain with gain variation < 1.2 dB over 5.7-6.4 GHz frequency band, which covers 5.725-5.875 GHz ISM and 5.9-6.4 GHz satellite uplink C band. Broadside radiation patterns have SLL < -19 dB, cross polarization (CPL) < -17 dB, and F/B > 20 dB with wide 3 dB gain BW of 15.2%. The overall antenna dimensions are 2.3λ0x2.75λ0x0.5λ0, where λ0 is the free space wavelength corresponding to 5.8 GHz, central frequency of ISM frequency band. The measured results of the prototype fabricated structure agree with simulation ones.
Citation
Nayana Chaskar, Shishir Digamber Jagtap, Rajashree Thakare, and Rajiv Kumar Gupta, "Gain Flattening of Wideband FPC Antenna Using Elliptical and Rectangular Slotted AMC Layers," Progress In Electromagnetics Research C, Vol. 110, 81-89, 2021.
doi:10.2528/PIERC21010402
References

1. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air fed array antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 187-191, 2010.
doi:10.1109/LAWP.2010.2045470

2. Jagtap, S., A. Chaudhari, N. Chaskar, S. Kharche, and R. K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 509-512, 2018.
doi:10.1109/LAWP.2018.2799873

3. Meriche, M. A., H. Attia, A. Messai, S. I. M. Sheikh, and T. A. Denidni, "Directive wideband cavity antenna with single layer metasuperstrate," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1771-1774, 2019.
doi:10.1109/LAWP.2019.2929579

4. Xu, Y., R. Lian, Z. Wang, and Y.-Z. Yin, "Wideband Fabry-Perot resonator antenna with single layer partially reflective surface," Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017.
doi:10.2528/PIERL16072806

5. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas Wireless Propag. Lett., Vol. 14, 229-232, 2015.
doi:10.1109/LAWP.2014.2360703

6. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755

7. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using an FSS superstrate layer," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 2101-2106, 2012.
doi:10.1109/TAP.2012.2186230

8. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533

9. Chen, J., Y. Zhao, Y. Ge, and L. Xing, "Dual-band high-gain Fabry Perot cavity antenna with a shared-aperture FSS layer," IET Microw. Antennas Propag., Vol. 12, No. 13, 2007-2011, Oct. 2018.
doi:10.1049/iet-map.2018.5183

10. Dang, D.-N. and C. Seo, "Compact high gain resonant cavity antenna with via hole feed patch and hybrid parasitic ring superstrate," IEEE Access, Vol. 7, 161963-161974, 2019.
doi:10.1109/ACCESS.2019.2950726

11. Ji, L.-Y., P.-Y. Qin, and Y. J. Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2018.
doi:10.1109/ACCESS.2017.2782749

12. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetic Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205

13. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 208-212, 2020.
doi:10.1109/LAWP.2019.2958108

14. Lv, Y.-H., X. Ding, and B.-Z. Wang, "Dual-wideband high-gain Fabry-Perot cavity antenna," IEEE Access, Vol. 8, 4754-4760, 2020.
doi:10.1109/ACCESS.2019.2962078

15. Wang, N., L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with electrically thin dielectric superstrates," IEEE Access, Vol. 6, 14966-14973, 2018.
doi:10.1109/ACCESS.2018.2810085

16. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetic Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103

17. Xie, P. and G.-M. Wang, "Design of a frequency reconfigurable Fabry-Perot cavity antenna with single layer partially reflecting surface," Progress In Electromagnetic Research Letters, Vol. 70, 115-121, 2017.
doi:10.2528/PIERL17072505

18. Yadav, V., S. Bhujade, and R. K. Gupta, "Efficient high gain circularly polarized microstrip antenna using asymmetrical RIS surface," 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 88-91, Bhubaneswar, 2015.
doi:10.1109/ICMOCE.2015.7489697