Vol. 109
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-07
Innovative Microwave Design of Frequency-Independent Passive Phase Shifter with LCL-Network and Bandpass NGD Circuit
By
Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021
Abstract
The present paper develops an application of the bandpass (BP) negative group delay (NGD) circuit for the design of an independent frequency phase shifter (PS). The design principle of the innovative PS is constituted by an inductor-capacitor-inductor (LCL) T-shape passive cell in cascade with RLC-network series-based BP NGD circuits. The S-matrix analytical model of the LCL-NGD PS is established in function of the circuit elements. Then, the design equations of the PS elements in the function of the expected PS value and center frequency are formulated. The NGD PS topology is validated with a comparison between the calculated and simulated results of phase, transmission coefficient, and reflection coefficients. As expected, a very good correlation between the analytical model and the simulation is confirmed by the obtained results. It is found that the LCL-NGD PS presents an outstandingly flat phase shift of -120°±5° with 1.2 GHz center frequency. The LCL-NGD PS operates with about 18% relative bandwidth. The PS reflection coefficient presents a magnitude flatness around -3±1.5 dB. Moreover, the reflection coefficient is kept better than -15 dB. The sensitivity of the LCL-NGD PS performances over the NGD circuit element ±5% relative variation is studied. It is found how the PS value and center frequencychange with the R, L, and C components of the NGD circuit.
Citation
Jamel Nebhen, and Blaise Ravelo, "Innovative Microwave Design of Frequency-Independent Passive Phase Shifter with LCL-Network and Bandpass NGD Circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201
References

1. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," Eur. Phys. J. D, Vol. 23, 125-141, 2003.
doi:10.1140/epjd/e2003-00022-0

2. Munday, J. N. and W. M. Robertson, "Observation of negative group delays within a coaxial photonic crystal using an impulse response method," Optics Communications, Vol. 273, No. 1, 32-36, 2007.
doi:10.1016/j.optcom.2006.12.039

3. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 2, 51-53, Feb. 2003.
doi:10.1109/LMWC.2003.808719

4. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2619-2625, Oct. 2003.
doi:10.1109/TAP.2003.817556

5. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electronics Letters, Vol. 46, No. 17, 1206-1208, Aug. 2010.
doi:10.1049/el.2010.1797

6. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801

7. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and “fronts” in a causal system: An experiment with very low-frequency bandpass amplifiers," Phys. Lett. A, Vol. 230, No. 3–4, 133-138, Jun. 1997.
doi:10.1016/S0375-9601(97)00244-2

8. Munday, J. N. and R. H. Henderson, "Superluminal time advance of a complex audio signal," Appl. Phys. Lett., Vol. 85, No. 3, 503-504, Jul. 2004.
doi:10.1063/1.1773926

9. Wan, F., J. Wang, B. Ravelo, J. Ge, and B. Li, "Time-domain experimentation of NGD active RC-network cell," IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 66, No. 4, 562-566, Apr. 2019.
doi:10.1109/TCSII.2018.2870836

10. Ahn, K.-P., R. Ishikawa, A. Saitou, and K. Honjo, "Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations," IEICE Trans. on Electronics, Vol. E92-C, No. 9, 1176-1181, 2009.
doi:10.1587/transele.E92.C.1176

11. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 8, 1727-1735, Aug. 2011.
doi:10.1109/TCSI.2011.2107251

12. Zhang, T., R. Xu, and C. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 10, 921-923, Oct. 2017.
doi:10.1109/LMWC.2017.2745487

13. Ravelo, B., "Investigation on microwave negative group delay circuit," Electromagnetics, Vol. 31, No. 8, 537-549, Nov. 2011.
doi:10.1080/02726343.2011.621106

14. Wu, C.-T. M. and T. Itoh, "Maximally flat negative group delay circuit: A microwave transversal filter approach," IEEE Trans. on Microwave Theory and Techniques, Vol. 62, No. 6, 1330-1342, Jun. 2014.
doi:10.1109/TMTT.2014.2320220

15. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electronics Letters, Vol. 53, No. 7, 476-478, Mar. 2017.
doi:10.1049/el.2017.0328

16. Chaudhary, G. and Y. Jeong, "Tunable center frequency negative group delay filter using a coupling matrix approach," IEEE Microwave Wireless Component Letters, Vol. 27, No. 1, 37-39, 2017.
doi:10.1109/LMWC.2016.2629985

17. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radio Engineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.

18. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016-1032, Oct. 2014.
doi:10.1002/cta.1902

19. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of oscillators, filters and communication systems," Electron. Lett., Vol. 36, No. 23, 1931-1933, Nov. 2000.
doi:10.1049/el:20001377

20. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group delay circuit," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1109/TMTT.2010.2045576

21. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808

22. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative-group-delay networks," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 12, 4322-4332, Dec. 2013.
doi:10.1109/TMTT.2013.2281967

23. Mortazawi, A. and W. Alomar, Negative group delay circuit, United States Patent Application US20160093958, Mar. 2016.

24. Zhu, M. and C.-T. M. Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," Proc. 2019 49th European Microwave Conference (EuMC), 256-259, Paris, France, Oct. 1–3, 2019.

25. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," International Journal of Electronics and Communications (AE¨U)/Int. J. Electron. Commun., Vol. 68, No. 4, 282-290, Apr. 2014.
doi:10.1016/j.aeue.2013.09.003

26. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modelling of baseband and modulated signal delay compensations with low- and band-pass NGD effects," Int. J. Electron. Commun., Vol. 70, No. 9, 1122-1127, Sept. 2016.
doi:10.1016/j.aeue.2016.05.009

27. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," Int. J. Electron. Commun., Vol. 123, No. 153297, 1-6, 2020.