1. Anguera, J., A. Andujar, M. C. Huynh, et al. "Advances in antenna technology for wireless handheld devices," International Journal on Antennas and Propagation, Vol. 2013, 2013.
doi:10.1155/2013/838364
2. Wong, K. L., Planar Antennas for Wireless Communications, Wiley Inter-Science, 2003.
3. Rumsey, V., Frequency Independent Antennas, Academic Press, 1966.
4. Chen, D. and C. Q. Cheng, "A novel compact Ultra-Wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306
5. Haq, M. A. U., S. Koziel, and Q. S. Cheng, "Miniaturisation of wideband antennas by means of feed line topology alterations," IET Microwaves, Antennas & Propagation, Vol. 12, No. 13, 2128-2134, 2018.
doi:10.1049/iet-map.2018.5197
6. Dong, Y., W. Hong, and L. Liu, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
doi:10.1002/mop.24222
7. Singhal, S. and A. K. Singh, "Elliptical monopole based super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1324-1328, 2020.
doi:10.1002/mop.32143
8. Trinh-van, S., G. Kwon, and K. C. Hwang, "Planar super-wideband loop antenna with asymmetric coplanar strip feed," Electronics Letters, Vol. 52, No. 2, 96-98, 2015.
doi:10.1049/el.2015.2548
9. Omar, S. A., A. Iqbal, O. A. Saraereh, et al. "An array of M-SHAPED vivaldi antennas for UWB applications," Progress In Electromagnetics Research Letters, Vol. 68, 67-72, 2017.
doi:10.2528/PIERL17041506
10. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.
doi:10.2528/PIERC17010801
11. Iqbal, A., A. Smida, N. K.Mallat, et al. "A compact UWB antenna with independently controllable notch bands," Sensors, Vol. 19, No. 6, 1411, 2019.
doi:10.3390/s19061411
12. Palaniswami, S. K., M. Kanagasabai, and S. A. Kumar, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, 2017.
doi:10.1017/S1759078715000951
13. Oskouei, H. D. and A. Mirtaheri, "A monopole super wideband microstrip antenna with band-notch rejection," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 2019-2024, Singapore, Singapore, Nov. 19–22, 2017.
14. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117
15. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154
16. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2015.
doi:10.1002/mop.28872
17. Tahir, F. A. and A. H. Naqvi, "A compact hut-shaped printed antenna for super-wideband applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2645-2649, 2015.
doi:10.1002/mop.29413
18. Sharma, M., "Superwideband triple notch monopole antenna for multiple wireless applications," Wireless Personal Communications, Vol. 104, No. 1, 459-470, 2019.
doi:10.1007/s11277-018-6030-9
19. Rahman, M. N., M. T. Islam, M. Z. Mahmud, et al. "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017.
doi:10.1002/mop.30770
20. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016.
doi:10.1002/mop.30152
21. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094
22. Risco, S., J. Anguera, A. Andujar, et al. "Coupled monopole antenna design for multiband handset devices," Microwave and Optical Technology Letters, Vol. 52, No. 2, 359-364, 2010.
doi:10.1002/mop.24893
23. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5GHz dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368
24. Zhu, X., Y. Li, S. Yong, et al. "A novel definition and measurement method of group delay and its application," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 1, 229-233, 2008.
25. Mussina, R., D. R. Selviah, F. A. Fernandez, et al. "A rapid accurate technique to calculate the group delay, dispersion and dispersion slope of arbitrary radial refractive index profile weakly-guiding optical fibers," Progress In Electromagnetics Research, Vol. 145, 93-113, 2014.
doi:10.2528/PIER13031203
26. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2212, 2011.
doi:10.1109/TAP.2011.2152322