1. Djajaputra, D., "Electrical impedance tomography: Methods, history and applications," Medical Physics, Vol. 32, No. 8, 2731-2731, 2005.
doi:10.1118/1.1995712
2. Yu, Y., J. Jin, F. Liu, and S. Crozier, "Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform," PLoS ONE, Vol. 9, No. 6, e98441, 2014.
doi:10.1371/journal.pone.0098441
3. Fu, H.-S. and B. Han, "Tikhonov regularization-homotopy method for electrical impedance tomography," Journal of Natural Science of Heilongjiang University, Vol. 3, 319-323, 2011.
4. Wang, Q., H. Wang, R. Zhang, et al. "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253
5. Zhao, B., H. X. Wang, X. Y. Chen, X. L. Shi, and W. Q. Yang, "Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method," Measurement Science and Technology, Vol. 18, No. 11, 3373-3383, 2007.
doi:10.1088/0957-0233/18/11/017
6. Morucii, J., M. Granie, M. Lei, M. Chebett, and W. Dai, "Direct sensitivity matrix in electrical impedance imaging," International Conference of the IEEE Engineering in Medicine and Biology Society, 538-539, 1994.
7. Barber, D. C., "A sensitivity method for electrical impedance tomography," Clinicial Phyiscs and Physiological Measurement, Vol. 10, No. 4, 368-371, 1989.
doi:10.1088/0143-0815/10/4/011
8. Semenov, S. Y., A. E. Bulyshev, A. E. Souvorov, et al. "Iterative algorithm for 3D EIT," Engineering in Medicine and Biology Society, 10, 1997.
9. Wang, M., "Inverse solutions for electrical impedance tomography based on conjugate gradients methods," Measurement Science and Technology, Vol. 13, 101-117, 2002.
doi:10.1088/0957-0233/13/1/314
10. Borsic, A., et al., "In vivo impedance imaging with total variation regularization," IEEE Transactions on Medical Imaging, Vol. 29, No. 1, 44-53, 2010.
doi:10.1109/TMI.2009.2022540
11. Lukaschewitsch, M., P. Maass, and M. Pidcock, "Tikhonov regularization for electrical impedance tomography on unbounded domains," Inverse Problems, Vol. 19, 585-610, 2003.
doi:10.1088/0266-5611/19/3/308
12. Fan, W., H. Wang, et al. "An image reconstruction algorithm based on preconditioned LSQR for 3D EIT," IEEE International Instrumentation and Measurement Technology Conference, 10, 2011.
13. Jacobsen, M., P. C. Hansen, and M. A. Saunders, "Subspace preconditioned LSQR for discrete ill-posed problems," BIT Numerical Mathematics, Vol. 43, 975-989, 2003.
doi:10.1023/B:BITN.0000014547.88978.05
14. Wang, H. X., L. Tang, and Y. Yan, "Total variation regularization algorithm for electrical capacitance tomography," Chinese Journal of Scientific Instrument, Vol. 28, No. 11, 2014-2018, 2007.
15. Chambelle, A., et al., "An algorithm for total variation minimization and applications," Journal of Mathematical Imaging and Vision, Vol. 20, 89-97, 2004.
16. Yang, Y., H. Wu, et al. "Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation," IEEE Sensors Journal, Vol. 17, No. 17, 5589-5598, 2017.
doi:10.1109/JSEN.2017.2728179
17. Hemming, B., A. Fagerlund, and A. Lassila, "Linearized solution to electrical impedance tomography based on the schur conjugate gradient method," Measurement Science & Technology, Vol. 18, No. 11, 3373, 2007.
doi:10.1088/0957-0233/18/11/017
18. Li, X., X. Chen, et al. "Electrical-impedance-tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury," AIP Advances, Vol. 10, 9000000, 2019.
19. Kolda, T. and B. Bader, "Tensor decompositions and applications," SIAM Rev., Vol. 51, No. 3, 455-500, 2009.
doi:10.1137/07070111X
20. De Lathauwer, L., B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., Vol. 21, 1253-1278, 2000.
doi:10.1137/S0895479896305696
21. Wang, Q., P. Zhang, et al. "Patch-based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 257-269, 2017.
doi:10.1108/SR-07-2016-0126
22. Caiafa, C. F. and A. Cichocki, "Fast and stable recovery of approximatelly low multilinear rank tensors from multi-way compressive measurements," IEEE Int. Conf. Acoust. Speech, Signal., 6790-6794, 2014.
23. Caiafa, C. F. and A. Cichocki, "Multidimensional compressed sensing and their applications," Wiley Interdisciplinary Rev.: Data Mining Knowledge Discovery, Vol. 3, No. 6, 355-380, 2013.
doi:10.1002/widm.1108
24. Hansen, P. C., "Rank-deficient and discrete Ill-posed problems," American Mathematical Monthly, Vol. 10, No. 3, 215-247, 1998.
25. Caiafa, C. F. and A. Cichocki, "Stable, robust, and super fast reconstruction of tensors using multi-way projections," IEEE Transactions on Signal Processing, Vol. 63, No. 3, 780-793, 2015.
doi:10.1109/TSP.2014.2385040
26. Schullcke, B., Z. S. Krueger, and B. Gong, "Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: A simulation study," J. Clin. Monit. Comput., Vol. 32, No. 4, 753-761, 2018.
doi:10.1007/s10877-017-0069-0
27. Schullcke, B., Z. S. Krueger, and B. Gong, "A simulation study on the ventilation inhomogeneity measured with electrical impedance tomography," IFAC Papers on Line, Vol. 50, 8781-8785, 2017.
doi:10.1016/j.ifacol.2017.08.1737
28. Wang, Q., H. X. Wang, et al. "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253