1. Chandravanshi, S. and M. J. Akhtar, "Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 59, No. 3, 681-686, 2017.
doi:10.1002/mop.30365
2. Palazzi, V., M. Del Prete, and M. Fantuzzi, "Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands," IEEE Microwave Magazine, Vol. 18, No. 1, 91-99, 2017.
doi:10.1109/MMM.2016.2616189
3. Sun, H., Y. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 929-932, 2012.
4. Harouni, Z., L. Osman, and A. Gharsallah, "Efficient 2.45GHz rectenna design with high harmonic rejection for wireless power transmission," International Journal of Computer Science Issues, Vol. 7, No. 5, 424-427, Sep. 2010.
5. Marian, V., B. Allard, C. Vollaire, and J. Verdier, "Strategy for microwave energy harvesting from ambient field or a feeding source," IEEE Transactions on Power Electronics, Vol. 27, No. 11, 4481-4491, 2012.
doi:10.1109/TPEL.2012.2185249
6. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460
7. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319
8. Sun, H. and W. Geyi, "A new rectenna with all-polarization-receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345
9. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 36-39, 2016.
10. He, Y., K. Ma, N. Yan, and H. Zhang, "Dual-band monopole antenna using substrate-integrated suspended line technology for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2776-2779, 2017.
doi:10.1109/LAWP.2017.2745503
11. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789
12. Berges, R., L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, "Conformable dual-band wireless energy harvester dedicated to the urban environment," Microwave and Optical Technology Letters, Vol. 62, No. 11, 3391-3400, 2020.
doi:10.1002/mop.32461
13. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient rf energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397
14. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1768-1778, 2015.
doi:10.1109/TMTT.2015.2416233
15. Song, C., Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505
16. Okba, A., A. Takacs, H. Aubert, S. Charlot, and P.-F. Calmon, "Multiband rectenna for microwave applications," Comptes Rendus Physique, Vol. 18, No. 2, 107-117, 2017.
doi:10.1016/j.crhy.2016.12.002
17. Lu, P., X.-S. Yang, J.-L. Li, and B.-Z. Wang, "A dual-frequency quasi-PIFA rectenna with a robust voltage doubler for 2.45- and 5.8-GHz wireless power transmission," Microwave and Optical Technology Letters, Vol. 57, No. 2, 319-322, 2015.
doi:10.1002/mop.28841
18. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high-efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719
19. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, 2014.
doi:10.1109/MMM.2014.2309499
20. Liu, D.-S., F.-B. Li, X. Zou, Y. Liu, X.-M. Hui, and X.-F. Tao, "New analysis and design of a RF rectifier for RFID and implantable devices," Sensors, Vol. 11, 6494-6508, 2011.
doi:10.3390/s110706494
21. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
doi:10.1002/mop.31945
22. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "Broadband rectenna for radio frequency energy harvesting application," IETE Journal of Research, Vol. 64, No. 3, 347-353, 2018.
doi:10.1080/03772063.2017.1356755
23. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
doi:10.1109/TAP.2018.2826568
24. Tsai, C., I. Liao, C. Pakasiri, H. Pan, and Y. Wang, "A wideband 20mW UHF rectifier in CMOS," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 388-390, 2015.
doi:10.1109/LMWC.2015.2421357
25. Helal, E., M. El-Nozahi, S. Ibrahim, and H. F. Ragai, "A 1.65 to 2.5 GHz wide-band RF energy harvester," 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2018.
26. Xie, K., Y.-M. Liu, H.-L. Zhang, and L.-Z. Fu, "Harvest the ambient AM broadcast radio energy for wireless sensors," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14–15, 2054-2065, 2011.
doi:10.1163/156939311798072144
27. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis and optimization of dual side printed multiband antenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901
28. Pandey, R., A. K. Shankhwar, and A. Singh, "Far field analysis of defected ground structured wideband antenna for RF energy harvesting applications," Advances in VLSI, Communication, and Signal Processing, 201-212, David Harvey, Haranath Kar, Shekhar Verma, and Vijaya Bhadauria, editors, Springer Singapore, Singapore, 2021.
29. Saranya, N. and T. Kesavamurthy, "Design and performance analysis of broadband rectenna for an efficient RF energy harvesting application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21628, 2019.
doi:10.1002/mmce.21628