Vol. 108
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-07
Tri-Band Defected Ground Plane Based Planar Monopole Antenna for Wi-Fi/WiMAX /WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 108, 127-136, 2021
Abstract
Wireless technology plays a vital role in data transfer. There is an acute need of smart wireless devices which could respond effectively for specific applications. This paper presents a defected ground plane based planar antenna. The presented antenna has the potential to operate at 2.47 GHz, 3.55 GHz, and 5.55 GHz frequencies with gains of 3.88 dBi, 3.87 dBi, and 3.83 dBi having impedance bandwidths of 14.61%, 5.42%, and 5.40% respectively. Flame Retardant 4 (FR4) is employed as a substrate. The agreement between simulated and measured results points out the utilization of the presented structure for Wi-Fi/WiMAX/WLAN applications.
Citation
Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya, "Tri-Band Defected Ground Plane Based Planar Monopole Antenna for Wi-Fi/WiMAX /WLAN Applications," Progress In Electromagnetics Research C, Vol. 108, 127-136, 2021.
doi:10.2528/PIERC20120702
References

1. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 963-966, 2011.
doi:10.1109/LAWP.2011.2167309

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

4. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
doi:10.1017/S175907871400138X

5. Patel, U. P. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

6. Islam, M. M., M. T. Islam, and M. R. Faruque, "Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands," Scientific World Journal, Vol. 2013, 378420, 2013.

7. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
doi:10.1049/el.2014.2625

8. Wan, Y.-T., D. Yu, F.-S. Zhang, and F. Zhang, "Miniature multi-band monopole antenna using spiral ring resonators for radiation pattern characteristics improvement," Electron. Lett., Vol. 49, 382-384, 2013.
doi:10.1049/el.2012.3980

9. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
doi:10.1049/el.2013.0357

10. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
doi:10.1049/iet-map.2012.0174

11. Patel, R. H., A. H. Desai, and T. Upadhyaya, "Design of H-shape X-band application electrically small antenna," International Journal of Electrical Electronics and Data Communication (IJEEDC), Vol. 3, 1-4, 2015.

12. Pan, C. Y., T. S. Horng, W. S. Chen, and C. H. Huang, "Dual wideband printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 149-151, 2007.
doi:10.1109/LAWP.2007.891957

13. Xu, H. X., G. M. Wang, and M. Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

14. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branchcircuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

15. Hamad, E. K. I. and A. Abdelaziz, "Performance of a metamaterial-based 1 × 2 microstrip patch antenna array for wireless communications examined by characteristic mode analysis," Radioengineering, Vol. 28, No. 4, 681, 2019.
doi:10.13164/re.2019.0680

16. Xu, H. X., G. M. Wang, M. Q. Qi, and T. Cai, "Compact fractal left-handed structures for improved cross-polarization radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 546-554, 2014.
doi:10.1109/TAP.2013.2290308

17. Jiangpeng, L., Y. Cheng, Y. Nie, and R. Gong, "Metamaterial extends microstrip antenna," Microwaves RF, Vol. 52, 69-73, 2013.

18. Xu, H. X., G. M. Wang, M. Q. Qi, C. X. Zhang, J. G. Liang, J. Q. Gong, et al. "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

19. Hamad, E. K. I. and A. Abdelaziz, "Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes," Journal of Electrical Engineering, Vol. 70, No. 3, 187-197, 2019.
doi:10.2478/jee-2019-0027

20. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-195109, 2002.
doi:10.1103/PhysRevB.65.195104

21. Kaur, H. and A. Sharma, Microstrip Patch Antennas Using Metamaterials: A Review, 2017.

22. Singh, H. P. and R. Y. Kumar, "Design and simulation of rectangular microstrip patch antenna loaded with metamaterial structure," Electric Electron Tech. Open Acc. J., Vol. 1, No. 2, 00012, 2017.

23. Gangwar, K., Paras, R. P. S. Gangwar, and R. Verma, "Multiband microstrip patch antenna using metamaterial structure," 2nd International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS’15), 2018.

24. Li, L.-W., Y.-N. Li, T.-S., Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, No. 6, 164101, April 2010.

25. Islam, M. R., A. A. Alsaleh Adel, A. W. N. Mimi, M. Sarah Yasmin, and F. A. M. Norun, "Design of dual band microstrip patch antenna using metamaterial," IOP Conference Series: Materials Science and Engineering, Vol. 260, No. 1, 012037, IOP Publishing, 2017.
doi:10.1088/1757-899X/1067/1/012037

26. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with lefthanded metamaterials," IEEE Trans. Antennas Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230

27. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, 2283-2291, 2006.
doi:10.1109/TAP.2006.879199

28. Aminu-Baba, M., M. K. A. Rahim, F. Zubir, A. Y. Iliyasu, M. F. M. Yusoff, K. I. Jahun, and O. Ayop, "Compact patch MIMO antenna with low mutual coupling for WLAN applications," ELEKTRIKA — Journal of Electrical Engineering, Vol. 18, No. 1, 43-46, 2019.
doi:10.11113/elektrika.v18n1.146

29. Shehata, G., M. Mohanna, and M. L. Rabeh, "Tri-band small monopole antenna based on SRR units," NRIAG Journal of Astronomy and Geophysics, Vol. 4, No. 2, 185-191, 2015.
doi:10.1016/j.nrjag.2015.08.003

30. Vahora, A. and K. Pandya, "Triple band dielectric resonator antenna array using power divider network technique for GPS navigation/bluetooth/satellite applications," International Journal of Microwave and Optical Technology, Vol. 15, 369-378, July 2020.

31. Pimpalgaonkar, P. R., T. K. Upadhyaya, K. Pandya, M. R. Chaurasia, and B. T. Raval, "A review on dielectric resonator antenna," 1ST International Conference on Automation in industries (ICAI), 106-109, June 2016.

32. Vahora, A. and K. Pandya, "Implementation of cylindrical dielectric resonator antenna array for Wi-Fi/wireless lan/satellite applications," Progress In Electromagnetics Research, Vol. 90, 157-166, March 2020.
doi:10.2528/PIERM20011604

33. Iizuka, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Trans. Antennas Propag., Vol. 55, 1246-1253, 2007.
doi:10.1109/TAP.2007.895568

34. Patel, A., Y. Kosta, N. Chhasatia, and K. Pandya, "Multiple band waveguide based microwave resonator," IEEE — International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 84-87, IEEE, March 2012.

35. Pimpalgaonkar, P. R., M. R. Chaurasia, B. T. Raval, T. K. Upadhyaya, and K. Pandya, "Design of rectangular and hemispherical dielectric resonator antenna," 2016 International Conference on Communication and Signal Processing (ICCSP), 1430-1433, IEEE, 2016.
doi:10.1109/ICCSP.2016.7754392

36. Vahora, A. and K. Pandya, "Microstrip feed two elements pentagon dielectric resonator antenna array," 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), 22-25, IEEE, 2019.
doi:10.1109/ICITAET47105.2019.9170140

37. Patel, R. and T. Upadhyaya, "An electrically small antenna for nearfield biomedical applications," Microwave and Optical Technology Letters, Vol. 60, No. 3, 556-561, 2018.
doi:10.1002/mop.31007