Vol. 108
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-18
Near-Field Focused Reflectarray Antenna and Reconfigurable Intelligent Surfaces: the Potential of Wave Propagation Control for Smart Radio Environment
By
Progress In Electromagnetics Research C, Vol. 108, 211-225, 2021
Abstract
Reconfigurable intelligent surfaces (RISs) have recently attracted attention in the implementation of smart radio environment. In this paper, RISs are realized by the near-field focused antennas (NFF). A near-field channel gain model of RIS-assisted wireless communications is developed for an NFF reflectarray antenna based on the physics and electromagnetic nature of the RISs. The developed model entails the computation of the reflectarray aperture efficiency. Also, it takes into account reflectarray reconfigurablility to cope with varying environment, physical factors like the physical dimensions of the RISs, and the radiation patterns of the unit cells. Moreover, it is characterised by a reduction in the complexity. This model is further used in computing the positioning performance bounds and estimating the RIS optimal beamformer weights. For a validation purpose, the model is simulated by using Matlab software, and the results are compared to the simulation results of a near-field model discussed in literature. The comparison shows a very good agreement. Finally, the reflectarray antenna is thinned to achieve a performance comparable to a fully populated reflectarray antenna case using the full wave 3D electromagnetic solver CST Microwave Studio (CST MWS).
Citation
Wael Elshennawy, "Near-Field Focused Reflectarray Antenna and Reconfigurable Intelligent Surfaces: the Potential of Wave Propagation Control for Smart Radio Environment," Progress In Electromagnetics Research C, Vol. 108, 211-225, 2021.
doi:10.2528/PIERC20120303
References

1. Di Renzo, M., A. Zappone, M. Debbah, M. S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020.
doi:10.1109/JSAC.2020.3007211

2. ElMossallamy, M. A., H. Zhang, L. Song, K. G. Seddik, Z. Han, and G. Y. Li, "Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities," IEEE Transactions on Cognitive Communications and Networking, Vol. 6, No. 3, 990-1002, 2020.
doi:10.1109/TCCN.2020.2992604

3. Liaskos, C., A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F. Akyildiz, "Using any surface to realize a new paradigm for wireless communications," ACM Commun., Vol. 61, No. 11, 30-33, Nov. 2018.
doi:10.1145/3192336

. The next hyper — Connected experience for all, White Paper, Samsung 6G Vision, Jun. 2020.

5. Pan, C., H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, "Intelligent reflecting surface aided mimo broadcasting for simultaneous wireless information and power transfer," IEEE Journal on Selected Areas in Communications, 2020.

6. Chu, Z., W. Hao, P. Xiao, and J. Shi, "Intelligent reflecting surface aided multi-antenna secure transmission," IEEE Wireless Communications Letters, Vol. 9, No. 1, 108-112, 2019.
doi:10.1109/LWC.2019.2943559

7. Park, S. Y. and D. I. Kim, "Intelligent reflecting surface-aided phaseshift backscatter communication," 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), 1-5, IEEE, 2020.

8. Zhang, H., H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "Towards ubiquitous positioning by leveraging reconfigurable intelligent surface," IEEE Communications Letters, Sep. 10, 2020.

9. Nepa, P. and A. Buffi, "Near-field-focused microwave antennas: Near-field shaping and implementation," IEEE Antennas and Propagation Magazine, Vol. 59, No. 3, 42-53, 2017.
doi:10.1109/MAP.2017.2686118

10. Huang, C., G. C. Alexandropoulos, C. Yuen, and M. Debbah, "Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces," 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2019.

11. Nayeri, P., A. Z. Elsherbeni, R. L. Haupt, and F. Yang, "Near-field scanning characteristics of focused reflectarray antennas," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, IEEE, 2015.

12. Dehnavi, M. M. and J. Laurin, "Near field focusing using a circularly polarized reconfigurable reflectarray," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1953-1954, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889130

13. Di Renzo, M., F. Habibi Danufane, X. Xi, J. de Rosny, and S. Tretyakov, "Analytical modeling of the path-loss for reconfigurable intelligent surfaces — Anomalous mirror or scatterer?," 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2020.

14. Tang, W., M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, "Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement," IEEE Transactions on Wireless Communications, 2020.
doi:10.1109/TWC.2020.3041339

15. Hu, S., F. Rusek, and O. Edfors, "The potential of using large antenna arrays on intelligent surfaces," 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-6, Sydney, NSW, 2017.

16. Garcia, J. C. B., A. Sibille, and M. Kamoun, "Reconfigurable intelligent surfaces: Bridging the gap between scattering and reflection," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2538-2547, 2020.
doi:10.1109/JSAC.2020.3007037

17. Tuan, S. and H. Chou, "Asymptotic analysis of scattering from reflectarray antennas for the near-field focused applications," 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 173-176, 2015.
doi:10.1109/APEMC.2015.7175322

18. Arrebola, M., Y. Alvarez, J. A. Encinar, and F. Las-Heras, "Accurate analysis of printed reflectarrays considering the near field of the primary feed," IET Microwaves, Antennas Propagation, Vol. 3, No. 2, 187-194, 2009.
doi:10.1049/iet-map:20070325

19. Chou, H., T. Hung, N. Wang, H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 1013-1018, 2011.
doi:10.1109/TAP.2010.2103030

20. Hu, S., F. Rusek, and O. Edfors, "Beyond massive MIMO: The potential of positioning with large intelligent surfaces," IEEE Trans. Signal Process., Vol. 66, No. 7, 1761-1774, Apr. 2018.
doi:10.1109/TSP.2018.2795547

21. Wymeersch, H. and B. Denis, "Beyond 5G wireless localization with reconfigurable intelligent surfaces," Proc. IEEE ICC, 1-6, Dublin, Ireland, Jun. 2020.

22. Huang, J. and J. A. Encinar, Antenna Analysis Techniques, Chapter 3, 27-78, John Wiley & Sons, Ltd, 2007, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470178775.ch3.

23. Sherman, J., "Properties of focused apertures in the fresnel region," IRE Transactions on Antennas and Propagation, Vol. 10, No. 4, 399-408, 1962.
doi:10.1109/TAP.1962.1137900

24. Silver, S., Microwave Antenna Theory and Design, Massachusetts Institute of Technology, Radiation Laboratory Series, No. 12, McGraw-Hill Book Company, 1949, [online], available: https://books.google.com.eg/books?id=Fi42MwEACAAJ.

25. Nayeri, P., et al., System Design and Aperture Efficiency Analysis, Chapter 3, 49-78, John Wiley & Sons, Ltd, 2018, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118846728.ch3.

26. Mielenz, K. D., "Computation of fresnel integrals. II.," Journal of Research of the National Institute of Standards and Technology, Vol. 105, No. 4, 589-590, 2000.
doi:10.6028/jres.105.049

27. Chou, H., Y. Liu, X. Dong, B. You, and L. Kuo, "Design of reflectarray antennas to achieve an optimum near-field radiation for RFID applications via the implementation of SDM procedure," Radio Science, Vol. 50, No. 4, 283-293, 2015.
doi:10.1002/2014RS005593

28. Nayeri, P., F. Yang, and A. Z. Elsherbeni, System Design and Aperture Efficiency Analysis, 49-78, 2018.

29. He, J., H. Wymeersch, L. Kong, O. Silv’en, and M. Juntti, "Large intelligent surface for positioning in millimeter wave MIMO systems," Proc. IEEE VTC-Spring, 1-5, Antwerp, Belgium, May 2020.

30. Basar, E., M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," IEEE Access, Vol. 7, 116753-116773, 2019.
doi:10.1109/ACCESS.2019.2935192

31. Di Renzo, M., M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin, J. de Rosny, A. Bounceur, G. Lerosey, and M. Fink, "Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come," EURASIP J. Wireless Commun. Netw., Vol. 2019, No. 1, 1-20, May 2019.
doi:10.1186/s13638-018-1318-8

32. Liaskos, C., S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "A new wireless communication paradigm through softwarecontrolled metasurfaces," IEEE Communications Magazine, Vol. 56, No. 9, 162-169, 2018.
doi:10.1109/MCOM.2018.1700659

33. Zhang, H., J. Hu, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "Metaradar: Indoor localization by reconfigurable metamaterials," IEEE Transactions on Mobile Computing, Dec. 14, 2020.

34. Johnson, J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

35. Ulichny, K., E. Levine, and H. Matzner, "Design of thinned antenna arrays," 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 238-241, 2015.
doi:10.1109/APSAR.2015.7306197