Vol. 108
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-19
Efficient Isolation Modelling for Two-Port MIMO Antenna by Gaussian Process Regression
By
Progress In Electromagnetics Research C, Vol. 108, 227-236, 2021
Abstract
This article present a synthesis modelling of isolation in a diamond-shaped fractal electromagnetic band gag (DSFEBG) based two-port multiple input and multiple-output (MIMO) antenna using the Gaussian Process Regression (GPR). A compact two-port MIMO antenna with 0.140λ inter-element spacing is considered for isolation improvement. To predict mutual coupling in two-port MIMO antenna supervised learning-based regression technique of GPR, the model is trained with 50 samples and tested on 125 samples. The model performs result prediction in less than 1 second with RMSE less than 0.0001%. For a better understanding of the isolation between elements of the MIMO antenna, the automatic relevance determination property of GPR is presented. The proposed model does faster computation and is efficient in predicting isolation in DSFEBG based antennas for lower and high-frequency bands of 5G communication system.
Citation
Kanhaiya Sharma, and Ganga Prasad Pandey, "Efficient Isolation Modelling for Two-Port MIMO Antenna by Gaussian Process Regression," Progress In Electromagnetics Research C, Vol. 108, 227-236, 2021.
doi:10.2528/PIERC20120301
References

1. Recioui, A., "Application of a galaxy-based search algorithm to MIMO system capacity optimization," Arabian Journal for Science and Engineering, Vol. 41, 3407-3414, 2015.
doi:10.1007/s13369-015-1934-0

2. Nimmagadda, S., "Optimal spectral and energy efficiency trade-off for massive MIMO technology: Analysis on modified lion and grey wolf optimization," Soft Computing, Vol. 14, 15523-15539, 2020.

3. Taieb, A., M. Soltani, and A. Chaari, "Parameter optimization of MIMO fuzzy optimal model predictive control by APSO," Hindawi Complexity, Vol. 2017, 11, 2017.

4. Ramya, P., R. S. Valarmathi, and C. Poongodi, "Antenna selection with Improved Group based Particle Swarm Optimization (IGPSO) and joint adaptive beam forming for wideband millimeter wave communication," Journal of Ambient Intelligence and Humanized Computing, 2020.

5. Hu, C., P. Lo, C. Ho, and D. Chang, "Automatic calibration using a modified genetic algorithm formillimeter-wave antenna modules in MIMO systems," Hindawi International Journal of Antennas and Propagation, Vol. 2020, 9, 2020.

6. Leal, I. A. C., M. S. Alencar, and W. T. A. Lopes, "Genetic algorithm optimization applied to the project of MIMO systems," 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 1-5, 2017.

7. Chen, X., S. Zhang, and Q. Li, "A review of mutual coupling in MIMO systems," IEEE Access, Vol. 6, 24706-24719, 2018.
doi:10.1109/ACCESS.2018.2830653

8. Malathi, A. C. J. and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian Journal of Science and Technology, Vol. 9, No. 35, 2016.

9. Chouhan, S., D. K. Panda, M. Gupta, and S. Singhal, "Multiport MIMO antennas with mutual coupling reduction techniques for modern wireless transreceive operations: A review," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21189, 2018.
doi:10.1002/mmce.21189

10. Wei, K., J. Li, L. Wang, Z. Xing, and R. Xu, "S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling," Electronics Letters, Vol. 52, No. 15, 1288-1290, 2016.
doi:10.1049/el.2016.0667

11. Lee, J., S. Kim, and J. Jang, "Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4194-4198, Sep. 2015.
doi:10.1109/TAP.2015.2447052

12. Anguera, J., C. Puente, C. Borja, and J. Soler, Fractal shaped antennas: A review, American Cancer Society, 2005, Online, available: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471654507.eme128.

13. Yang, P., J. Zhu, Y. Xiao, and Z. Chen, "Antenna selection for MIMO system based on pattern recognition," Digital Communications and Networks, Vol. 5, No. 1, 34-39, 2019.
doi:10.1016/j.dcan.2018.10.001

14. An, W., P. Zhang, J. Xu, H. Luo, L. Huang, and S. Zhong, "A novel machine learning aided antenna selection scheme for MIMO internet of things," Sensors (Basel, Switzerland), Vol. 20, No. 8, 2250, 2020.
doi:10.3390/s20082250

15. Sanguinetti, L., A. Zappone, and M. Debbah, "Deep learning power allocation in massive MIMO," 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 1257-1261, 2018.
doi:10.1109/ACSSC.2018.8645343

16. Vu, T. X., L. Lei, S. Chatzinotas, and B. Ottersten, "Machine learning based antenna selection and power allocation in multi-user MISO systems," 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 1-6, 2019.

17. Magoarou, L. L. and S. Paquelet, "Online unsupervised deep unfolding for massive MIMO channel estimation," Signal Processing, 2020.

18. Huang, H., W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, "Unsupervised learning-based fast beamforming design for downlink MIMO," IEEE Access, Vol. 7, 7599-7605, 2019.
doi:10.1109/ACCESS.2018.2887308

19. Rasmussen, C. E. and C. K. I. Williams, "Gaussian Processes for Machine Learning," MIT Press, 2006.

20. Jacobs, J. P. and W. P. du Plessis, "Efficient modeling of missile RCS magnitude responses by Gaussian processes," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3228-3231, 2017.
doi:10.1109/LAWP.2017.2771236

21. Jacobs, J. P., "Characterisation by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas," IET Microwaves, Antennas and Propagation, Vol. 10, No. 6, 1189-1195, Aug. 2016.
doi:10.1049/iet-map.2015.0621

22. Jacobs, J. P. and S. Koziel, "Two-stage gaussian process modeling of microwave structures for design optimization," Simulation-Driven Modeling and Optimization, 161-184, S. Koziel, L. Leifsson, and X.-S. Yang, Eds., Springer International Publishing, Cham, 2016.

23. Jacobs, J. P., "Efficient resonant frequency modeling for dual-band microstrip antennas by Gaussian process regression," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 337-341, 2015.
doi:10.1109/LAWP.2014.2362937

24. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, Apr. 2007.
doi:10.1103/PhysRevB.75.155410

25. Krzysztofik, W. J., "Fractals in antennas and metamaterials applications," Fractal Analysis, F. Brambila (ed.), Ch. 3, IntechOpen, Rijeka, 2017.

26. Ryu, J. and H. Kim, "Compact MIMO antenna for application to smart glasses using T-shaped ground plane," Microwave and Optical Technology Letters, Vol. 60, No. 8, 2010-2013, 2018.
doi:10.1002/mop.31288

27. Su, S., C. Lee, and F. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 456-463, Feb. 2012.
doi:10.1109/TAP.2011.2173450

28. Kumar, S., R. Kumar, R. K. Vishwakarma, and K. Srivastava, "An improved compact MIMO antenna for wireless applications with band-notched characteristics," AEU — International Journal of Electronics and Communications, Vol. 90, 20-29, 2018.
doi:10.1016/j.aeue.2018.04.008

29. Yang, Z., H. Yang, and H. Cui, "A compact MIMO antenna with inverted C-shaped ground branches for mobile terminals," International Journal of Antennas and Propagation, Vol. 2016, No. 3080563, 2016.

30. Dkiouak, A., A. Zakriti, M. E. Quahabi, A. Zugari, and M. Khalladi, "Design of a compact MIMO antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 72, 115-124, 2018.
doi:10.2528/PIERM18030103

31. Anuvind, R., S. D. Joseph, and A. Kothari, "2 × 2 MIMO antenna at 2.4GHz for WLAN applications," 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 80-83, Dec. 2015.
doi:10.1109/ICMOCE.2015.7489695

32. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "2 × 2 MIMO antenna for ISM band application," 2016 11th International Conference on Industrial and Information System (ICIIS), 794-797, 2016.
doi:10.1109/ICIINFS.2016.8263047

33. Ayatollahi, M., Q. Rao, and D. Wang, "A compact, high isolation and wide bandwidth antenna array for long term evolution wireless devices," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4960-4963, Oct. 2012.
doi:10.1109/TAP.2012.2207312