1. Nadaud, K., C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H. W. Gundel, "Domain wall motions in BST ferroelectric thin films in the microwave frequency range," Appl. Phys. Lett., Vol. 109, No. 26, 1-5, 2016.
doi:10.1063/1.4973451
2. Borderon, C., R. Renoud, M. Ragheb, and H. W. Gundel, "Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials," Appl. Phys. Lett., Vol. 98, No. 11, 11-13, 2011.
doi:10.1063/1.3567777
3. Balci, O., E. O. Polat, N. Kakenov, and C. Kocabas, "Graphene-enabled electrically switchable radar-absorbing surfaces," Nature Communications, Vol. 6, 1-9, 2015.
4. Yao, X., X. Kou, and J. Qiu, "Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability," Carbon, Vol. 107, 261-267, 2016.
doi:10.1016/j.carbon.2016.05.055
5. Che, R. C., C. Y. Zhi, C. Y. Liang, and X. G. Zhou, "Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite," Appl. Phys. Lett., Vol. 88, No. 3, 1-3, 2006.
doi:10.1063/1.2165276
6. Lv, R., F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, and D. Wu, "Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber," Appl. Phys. Lett., Vol. 93, No. 22, 2006-2009, 2008.
doi:10.1063/1.3042099
7. Zhang, B., J. Wang, J. Wang, S. Huo, B. Zhang, and Y. Tang, "Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites," Journal of Magnetism and Magnetic Materials, Vol. 413, 81-88, 2016.
doi:10.1016/j.jmmm.2016.04.014
8. Gui, X., W. Ye, J. Wei, K. Wang, R. Lv, H. Zhu, F. Kang, J. Gu, and D. Wu, "Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption," Journal of Physics D: Applied Physics, Vol. 42, No. 7, 075002, 2009.
doi:10.1088/0022-3727/42/7/075002
9. Ganchev, S. I., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 44, No. 6, 1023-1029, 1995.
doi:10.1109/19.475149
10. Drinovsky, J. and Z. Kejık, "Electromagnetic shielding efficiency measurement of composite materials," Measurement Science Review, Vol. 9, No. 4, 109-112, 2009.
doi:10.2478/v10048-009-0020-8
11. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249
12. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, 2008.
13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382
15. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NASA STI/Recon Technical Report N, Vol. 93, 12084, 1992.
16. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 1, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283
17. Hassan, A. M., J. Obrzut, and E. J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, 2016.
doi:10.1109/TMTT.2016.2603500
18. Vanzura, E. J., J. R. Baker-Jarvis, J. H. Grosvenor, and M. D. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2063-2070, 1994.
doi:10.1109/22.330120
19. Wang, Y., I. Hooper, E. Edwards, and P. S. Grant, "Gap-corrected thin-film permittivity and permeability measurement with a broadband coaxial line technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 924-930, 2016.
20. Jamaian, S. S. and T. G. Mackay, "On limitations of the Bruggeman formalism for inverse homogenization," Journal of Nanophotonics, Vol. 4, No. 1, 1-8, 2010.
doi:10.1117/1.3460908
21. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Tech. Rep., NIST, 1992.
22. Whites, K. W., "Electromagnetic wave propagation through circular waveguides containing radially inhomogeneous lossy media," Tech. Rep., Construction Engineering Research Lab, (ARMY), Champaign, IL, 1989.
23. Fehlen, R. G., Air gap error compensation for coaxial transmission line, Ph.D. dissertation, Air Force Institute, 2006.
24. Mattar, K. E., D. G. Watters, M. E. Brodwin, and L. S. Member, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 532-537, 1991.
doi:10.1109/22.75297
25. Leuchtmann, P. and J. Rufenacht, "On the calculation of the electrical properties of precision coaxial lines," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, 392-397, 2004.
doi:10.1109/TIM.2003.822719
26. Kim, S., H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, "Switchable nonlinear metasurfaces for absorbing high power surface waves," Applied Physics Letters, Vol. 108, No. 4, 1-5, 2016.
27. Luo, Z., X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, "Nonlinear power-dependent impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1736-1745, 2015.
doi:10.1109/TAP.2015.2399513
28. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730
29. Belous, A., O. Ovchar, and D. Mischuk, "Temperature trends of the permittivity in complex oxides of rare-earth elements with perovskite-type structure," Condensed Matter Physics, Vol. 6, No. 2, 251, 2003.
doi:10.5488/CMP.6.2.251