Vol. 108
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-06
Air-Gap Correction for High Power Microwave Measurements of Conductive Materials
By
Progress In Electromagnetics Research C, Vol. 108, 1-12, 2021
Abstract
Measurements of the complex permittivity and permeability of solids at high electromagnetic field greater than 10 kV/m pose a significant challenge to RF connectors and input amplifiers of the measurement equipment. Specifically, difficulties arise in measuring materials with high imaginary permittivity or low impedance, which act as short circuits, either exceeding the measurement equipment damage threshold or that of the material under test, and/or inducing an unacceptable signal-to-noise in the collected data. In this work, we report the development of a new measurement technique where we introduce an outer air-gap between the material under test and the conductor of a coax airline. The introduced air-gap reduces the effective conductivity of the sample, mitigating damage to the materials under test and allowing for high power measurement. This study compares the ability of air-gap correction methods to recover the complex permittivity and permeability to within 10% of the value measured without an air-gap introduced.
Citation
John Berns Lancaster, Daniel Chandler, Eun Ju Moon, Ahmed M. Hassan, and Anthony N. Caruso, "Air-Gap Correction for High Power Microwave Measurements of Conductive Materials," Progress In Electromagnetics Research C, Vol. 108, 1-12, 2021.
doi:10.2528/PIERC20112601
References

1. Nadaud, K., C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H. W. Gundel, "Domain wall motions in BST ferroelectric thin films in the microwave frequency range," Appl. Phys. Lett., Vol. 109, No. 26, 1-5, 2016.
doi:10.1063/1.4973451

2. Borderon, C., R. Renoud, M. Ragheb, and H. W. Gundel, "Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials," Appl. Phys. Lett., Vol. 98, No. 11, 11-13, 2011.
doi:10.1063/1.3567777

3. Balci, O., E. O. Polat, N. Kakenov, and C. Kocabas, "Graphene-enabled electrically switchable radar-absorbing surfaces," Nature Communications, Vol. 6, 1-9, 2015.

4. Yao, X., X. Kou, and J. Qiu, "Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability," Carbon, Vol. 107, 261-267, 2016.
doi:10.1016/j.carbon.2016.05.055

5. Che, R. C., C. Y. Zhi, C. Y. Liang, and X. G. Zhou, "Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite," Appl. Phys. Lett., Vol. 88, No. 3, 1-3, 2006.
doi:10.1063/1.2165276

6. Lv, R., F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, and D. Wu, "Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber," Appl. Phys. Lett., Vol. 93, No. 22, 2006-2009, 2008.
doi:10.1063/1.3042099

7. Zhang, B., J. Wang, J. Wang, S. Huo, B. Zhang, and Y. Tang, "Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites," Journal of Magnetism and Magnetic Materials, Vol. 413, 81-88, 2016.
doi:10.1016/j.jmmm.2016.04.014

8. Gui, X., W. Ye, J. Wei, K. Wang, R. Lv, H. Zhu, F. Kang, J. Gu, and D. Wu, "Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption," Journal of Physics D: Applied Physics, Vol. 42, No. 7, 075002, 2009.
doi:10.1088/0022-3727/42/7/075002

9. Ganchev, S. I., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 44, No. 6, 1023-1029, 1995.
doi:10.1109/19.475149

10. Drinovsky, J. and Z. Kejık, "Electromagnetic shielding efficiency measurement of composite materials," Measurement Science Review, Vol. 9, No. 4, 109-112, 2009.
doi:10.2478/v10048-009-0020-8

11. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

12. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, 2008.

13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

15. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NASA STI/Recon Technical Report N, Vol. 93, 12084, 1992.

16. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 1, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283

17. Hassan, A. M., J. Obrzut, and E. J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, 2016.
doi:10.1109/TMTT.2016.2603500

18. Vanzura, E. J., J. R. Baker-Jarvis, J. H. Grosvenor, and M. D. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2063-2070, 1994.
doi:10.1109/22.330120

19. Wang, Y., I. Hooper, E. Edwards, and P. S. Grant, "Gap-corrected thin-film permittivity and permeability measurement with a broadband coaxial line technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 924-930, 2016.

20. Jamaian, S. S. and T. G. Mackay, "On limitations of the Bruggeman formalism for inverse homogenization," Journal of Nanophotonics, Vol. 4, No. 1, 1-8, 2010.
doi:10.1117/1.3460908

21. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Tech. Rep., NIST, 1992.

22. Whites, K. W., "Electromagnetic wave propagation through circular waveguides containing radially inhomogeneous lossy media," Tech. Rep., Construction Engineering Research Lab, (ARMY), Champaign, IL, 1989.

23. Fehlen, R. G., Air gap error compensation for coaxial transmission line, Ph.D. dissertation, Air Force Institute, 2006.

24. Mattar, K. E., D. G. Watters, M. E. Brodwin, and L. S. Member, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 532-537, 1991.
doi:10.1109/22.75297

25. Leuchtmann, P. and J. Rufenacht, "On the calculation of the electrical properties of precision coaxial lines," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, 392-397, 2004.
doi:10.1109/TIM.2003.822719

26. Kim, S., H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, "Switchable nonlinear metasurfaces for absorbing high power surface waves," Applied Physics Letters, Vol. 108, No. 4, 1-5, 2016.

27. Luo, Z., X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, "Nonlinear power-dependent impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1736-1745, 2015.
doi:10.1109/TAP.2015.2399513

28. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730

29. Belous, A., O. Ovchar, and D. Mischuk, "Temperature trends of the permittivity in complex oxides of rare-earth elements with perovskite-type structure," Condensed Matter Physics, Vol. 6, No. 2, 251, 2003.
doi:10.5488/CMP.6.2.251