Vol. 107
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-08
Wideband CPW-Fed Oval-Shaped Monopole Antenna for Wi-Fi5 and Wi-Fi6 Applications
By
Progress In Electromagnetics Research C, Vol. 107, 173-182, 2021
Abstract
A wideband coplanar waveguide (CPW) fed monopole antenna designed for Wi-Fi5 and Wi-Fi6 applications is proposed. The proposed antenna (main radiator) has a designed footprint of only 20 × 8.7 × 0.4 mm3, which is composed of an oval-shaped ring radiator with three concentric rings and a double-T structure loaded with a J-shaped slot. The main novelty of this work is that the measured wideband operation of 34.5% (5.15-7.29 GHz) is contributed by only a single resonance at 6.2 GHz, conforming to the bandwidth requirement of Wi-Fi5 (5.15-5.85 GHz) and Wi-Fi6 (5.925-7.125 GHz). Furthermore, the proposed antenna also exhibits good radiation characteristics, including a gain around 2.25 dBi, a radiation efficiency above 80%, a total efficiency above 70%, and omnidirectional radiation patterns with a low magnitude of cross polarization throughout the bands of interest.
Citation
Jayshri Kulkarni, and Chow-Yen-Desmond Sim, "Wideband CPW-Fed Oval-Shaped Monopole Antenna for Wi-Fi5 and Wi-Fi6 Applications," Progress In Electromagnetics Research C, Vol. 107, 173-182, 2021.
doi:10.2528/PIERC20110903
References

1. Guo, Q., J. Zhang, J. Zhu, and D. Yan, "A compact multiband dielectric resonator antenna for wireless communications," Microw. Opt. Technol. Lett., Vol. 62, 2945-2952, 2020.
doi:10.1002/mop.32400

2. Gong, Y., S. Yang, B. Li, Y. Chen, F. Tong, and C. Yu, "Multi-band and high gain antenna using AMC ground characterized with four zero-phases of reflection coefficient," IEEE Access, Vol. 8, 171457-171468, 2020.
doi:10.1109/ACCESS.2020.3024982

3. Rajalakshmi, P. and N. Gunavathi, "Compact modified hexagonal spiral resonator-based tri-band patch antenna with octagonal slot for Wi-Fi/WLAN applications," Progress In Electromagnetics Research C, Vol. 106, 77-87, 2020.
doi:10.2528/PIERC20081803

4. Yang, Y.-B., F.-S. Zhang, Y.-Q. Zhang, and X.-P. Li, "Design and analysis of a novel miniaturized dual-band omnidirectional antenna for WiFi applications," Progress In Electromagnetics Research M, Vol. 94, 95-103, 2020.
doi:10.2528/PIERM20050804

5. Aziz, A., A. Motagaly, A. Ibrahim, W. Rouby, and M. Abdalla, "A printed expanded graphite paper based dual band antenna for conformal wireless applications," Int. J. Electron. Comm. (AEU), Vol. 110, 1-7, 2019.

6. Kulkarni, J. and C. Y. D. Sim, "Low-profile, compact multi-band monopole antenna for futuristic wireless applications," 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1-5, Bangalore, India, 2020.

7. Kumar, A., A. A. Althuwayb, and M. J. Al-Hasan, "Wideband triple resonance patch antenna for 5G Wi-Fi spectrum," Progress In Electromagnetics Research Letters, Vol. 93, 89-97, 2020.
doi:10.2528/PIERL20071605

8. Abbasi, N., R. Langley, and S. Bashir, "Multiband shorted monopole antenna," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 5, 618-633, 2014.
doi:10.1080/09205071.2014.882271

9. Saraswat, R. and M. Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 1-13, 2019.

10. Jing, J., J. Pang, H. Lin, Z. Qui, and C.-J. Liu, "A multiband compact low-profile planar antenna based on multiple resonator stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERL20071104

11. Kumar, Y., R. Gangwar, and B. Kanaujia, "Asymmetrical mirror imaged monopole antenna with modified ground structure for DBDP radiations," International Journal of Electronics, Vol. 107, 1-24, 2020.

12. Kulkarni, J., N. Kulkarni, and A. Desai, "Development of H-shaped monopole antenna for IEEE 802.11a and HIPERLAN 2 applications in the laptop computer," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 7, 1-14, 2020.
doi:10.1002/mmce.22233

13. Sim, C. Y. D., C. C. Chen, X. Y. Zhang, and Y. L. Lee, "Very small-size uniplanar printed monopole antenna for dual-band WLAN laptop computer applications," IEEE Trans. Antennas Propag., Vol. 65, 2916-2922, 2017.
doi:10.1109/TAP.2017.2695528

14. Kulkarni, J., "Multi-band printed monopole antenna conforming bandwidth requirement of GSM/WLAN/WiMAX standards," Progress In Electromagnetics Research Letters, Vol. 91, 59-66, 2020.
doi:10.2528/PIERL20032104

15. Kulkarni, J., "An ultra-thin, dual band, sub 6GHz, 5G and WLAN antenna for next generation laptop computers," Circuit World, Vol. 45, 363-370, 2020.
doi:10.1108/CW-07-2019-0076

16. Sim, C., H. Liu, and C. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 74-78, 2020.
doi:10.1109/LAWP.2019.2953334

17. Kulkarni, J., A. Desai, and C. Y. D. Sim, "Wideband four-port MIMO antenna array with high isolation for future wireless systems," Int. J. Electron. Comm. (AEU), 2020.