Vol. 111
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-11
Quantization-Aware Greedy Antenna Selection for Multi-User Massive MIMO Systems
By
Progress In Electromagnetics Research C, Vol. 111, 15-24, 2021
Abstract
Using multiple-Input Multiple-Output (MIMO) configuration is not new in the field of wireless communication to increase the capacity of the system. This configuration is still valid to use nowadays with the modern wireless configuration such as the Fifth generation (5G). Massive MIMO is the key resource of the 5G systems due to its huge ability to increase the capacity of the network and on the other hand its ability to enhance both spectral and transmit-energy efficiency. The need for using Massive MIMO comes from the increase in using smartphones, tablets, and the rise of the Internet of Things. This increasing demand for the use of wireless applications requires networking and Internet infrastructures to meet the needs of current and future multimedia applications which massive MIMO satisfies. The key limitation of using massive MIMO is the cost of installation of these antennas and how to multiplex between them. In addition to this, the Radio Frequency (RF) links are also increased where this increase leads to high system complexity and hardware energy consumption. Because of this, reducing the required number of RF chains is essential to use by performing antenna selection which this paper aims to evaluate without significant performance loss which can be performed by employing low-resolution Analog-to-Digital Converter (ADC) to select an antenna with the best tradeoff between the additional channel gain and increase in quantization error. In this paper, Quantization-Aware Greedy Antenna Selection (QAGAS) algorithm has been proposed and compared with other antenna selection algorithms especially simple algorithms like random selection and Fast Antenna Selection (FAS) algorithm. The achieved capacity is compared with that of a very simple scheme that selects the antennas with the highest received power. The system capacity obtained from QAGAS is evaluated related to the transmit power of the Base Station (BS) and the quantization bits used in the low-resolution ADC. The simulation is also performed for different numbers of users served by the BS and with the number of antennas at the BS. The simulation results show that the proposed algorithm indicates a potential for significant reductions of massive MIMO implementation complexity, by reducing the number of RF links and performing antenna selection using simple algorithms.
Citation
Hasan Falah Mahdi, Ahmed Thair Alheety, Nather Abdulhakeem Hamid, and Sefer Kurnaz, "Quantization-Aware Greedy Antenna Selection for Multi-User Massive MIMO Systems," Progress In Electromagnetics Research C, Vol. 111, 15-24, 2021.
doi:10.2528/PIERC20102306
References

1. Hu, A., "Beam grouping based user scheduling in multi-cell millimeter-wave MIMO systems," IEEE Access, Vol. 6, 55004-55012, 2018.
doi:10.1109/ACCESS.2018.2872516

2. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102

3. Di, B., L. Song, and Y. Li, "Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks," IEEE Trans. Wirel. Commun., Vol. 15, No. 11, 7686-7698, 2016.
doi:10.1109/TWC.2016.2606100

4. Al-Heety, A. T., M. T. Islam, A. H. Rashid, H. N. A. Ali, A. M. Fadil, and F. Arabian, "Performance evaluation of wireless data traffic in mm wave massive MIMO communication," Indones. J. Electr. Eng. Comput. Sci., Vol. 20, No. 3, 2020.

5. Jubair, M. A., S. A. Mostafa, A. Mustapha, M. A. Salamat, and H. Hassan, "Digging deeper into quality assessment of software requirement specifications," J. Crit. Rev., Vol. 7, No. 12, 3869-3875, 2020.

6. French, A. M. and J. P. Shim, "The digital revolution: Internet of things, 5G, and beyond," Commun. Assoc. Inf. Syst., Vol. 38, 840-850, 2016.

7. Al-Heety, A. T., M. Singh, J. Singh, M. T. Islam, and A. H. Ahmed, "MM-wave backhauling for 5G small cells," International Journal of Engineering & Technology, Vol. 7, No. 4, 6233-6237, 2018.

8. Khan, M. F., K.-L. A. Yau, R. M. D. Noor, and M. A. Imran, "Survey and taxonomy of clustering algorithms in 5G," J. Netw. Comput. Appl., Vol. 154, 102539, 2020.
doi:10.1016/j.jnca.2020.102539

9. Hamdi, M. M., S. A. Rashid, M. Ismail, M. A. Altahrawi, M. F. Mansor, and M. K. Abufoul, "Performance evaluation of active queue management algorithms in large network," ISTT 2018 — 2018 IEEE 4th Int. Symp. Telecommun. Technol., 1-6, May 2018.

10. Rashid, S. A., L. Audah, M. M. Hamdi, and S. Alani, "Prediction based efficient multi-hop clustering approach with adaptive relay node selection for VANET," J. Commun., Vol. 15, No. 4, 332-344, 2020.
doi:10.12720/jcm.15.4.332-344

11. Jubair, M. A., et al., "Bat optimized link state routing protocol for energy-aware mobile ad-hoc networks," Symmetry (Basel)., Vol. 11, No. 11, 2019.

12. Hamid, N. A., A. T. Al-heety, A. Alaa, and H. Alsabbagh, "Filtered-multicarrier modulation techniques for vehicle-to-vehicle communication," Solid State Technology, Vol. 63, No. 6, November 2020.

13. Guo, J., N. Li, Z. Jiang, S. Liu, and P. Chen, "System-level evaluation on practical massive MIMO deployment scenarios for 5G," 2019 IEEE 5th Int. Conf. Comput. Commun. ICCC 2019, 993-998, 2019.

14. Saad, M. A., S. T. Mustafa, M. H. Ali, M. M. Hashim, M. Bin Ismail, and A. H. Ali, "Spectrum sensing and energy detection in cognitive networks," Indones. J. Electr. Eng. Comput. Sci., Vol. 17, No. 1, 465-472, 2019.

15. Ahmed, A. H., A. T. Al-Heety, and B. Al-Khateeb, "Energy efficiency in 5G massive MIMO for mobile wireless network," 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020.

16. Chandrasekaran, G., N. Wang, M. Hassanpour, M. Xu, and R. Tafazolli, "Mobility as a Service (MaaS): A D2D-based information centric network architecture for edge-controlled content distribution," IEEE Access, Vol. 6, 2110-2129, 2018.
doi:10.1109/ACCESS.2017.2781736

17. Rubia, J. J., B. R. Lincy, and B. R. Lawrence, "Enhanced modified booth recoding technique for signal processing application," International Journal of Trends in Computational Engineering and Technology (IJTCET), January 2017.

18. Felipe, C. F. D., A. P. de Figueiredo, E. R. de Lima, and G. Fraidenraich, "Capacity bounds for dense massive MIMO in a line-of-sight propagation environment," Sensors, Vol. 20, 1-24, 2020.
doi:10.1109/JSEN.2019.2959158

19. Choi, J. and B. L. Evans, "User scheduling for millimeter wave MIMO communications with low-resolution ADCs," IEEE Int. Conf. Commun., May 2018.

20. Ademaj, F., S. Schwarz, T. Berisha, and M. Rupp, "A spatial consistency model for geometry-based stochastic channels," IEEE Access, Vol. 7, 183414-183427, 2019.
doi:10.1109/ACCESS.2019.2958154

21. Jency Rubia, J., B. Lincy, and A. T. Al-Heety, "Moving vehicle detection from video sequences for traffic surveillance system," Journal of Engineering and Technology for Industrial Applications, 41-48, 2021.