Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-10
A New Fast, Memory Efficient Wireless Electromagnetic Beamformer Antenna with Fast Tracking for 5/6G Systems
By
Progress In Electromagnetics Research C, Vol. 110, 253-265, 2021
Abstract
The much-anticipated year of 5G deployment has lapsed, and yet much research is ongoing on the 5G New Radio (NR) interface. The quality of service and user experience is dependent on a stable and signal strength of the wireless communication link. To serve multiple users per sector accessing dedicated and unique services pose a challenge for passive antenna systems with omnidirectional beams. Smart 5G antenna technology with null forming and beamforming promises to serve mobile users well by offering a reliable wireless communication link. To address this need, we propose a 2 x 2 MIMO antenna capable of electronically forming electromagnetic beams in one direction and nullifying electromagnetic beams in any undesired direction. We demonstrate the usefulness of the proposed antenna by evaluating five cases that showed interesting insights, confirming the hypothesis that it is possible to implement beamforming in a 2 x 2 MIMO system with less computing power and minimum number crunching. What is novel and attractive about the proposed antenna are: (a) forming a beam with maximum directivity towards the desired user, while (b) simultaneously producing nulls towards an undesirable transmitter, and (c) a fast electromagnetic tracking module inbuilt into it so that the base station antenna may constantly track and maintain the communication link with the moving wireless transceiver or cell phone. While most wireless mobile systems use two separate software modules for beamforming and tracking the mobile station, the method presented here does electronic beamforming and tracking of the mobile user with a single low memory, computationally fast technique within the range of 10 ms to 19 s.
Citation
Herman Kunsei, Kandasamy Pirapaharan, and Paul R. P. Hoole, "A New Fast, Memory Efficient Wireless Electromagnetic Beamformer Antenna with Fast Tracking for 5/6G Systems," Progress In Electromagnetics Research C, Vol. 110, 253-265, 2021.
doi:10.2528/PIERC20091802
References

1. IMT Vision — Framework and Overall Objectives of the Future Development of IMT for 2020 and beyond, 2015.

2. Morley, D., 5G small cells and cable: Realizing the opportunity, Shaw Communications Inc/Freedom Mobile, Alberta, Technical Report October 2018, 2018.

3. Al, E., M. Ismail, R. Nordin, and N. F. Abdulah, "Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research," Frontiers of Information Technology & Electronic Engineering, Vol. 18, 753-772, 2017.
doi:10.1631/FITEE.1601817

4. Anritsu Ten 5G Challenges for Engineers to Overcome, 8, ed.: Anritsu, 2018.

5. Joseph, M., O. Tobi, and G. A. Igwue, "Development of a new adaptive beam-forming technique for smart antenna system," International Journal of Computer Applications (0975–8887), Vol. 178, No. 11, 2019.

6. Mr, K. M., A. V. R. Holla, and H. M. Guruprasad, "Simulation of reduced complexity beamforming algorithms for mobile communication," International Journal of Innovative Technology and Exploring Engineering (IJITEE), Vol. 1, No. 2, 2012.

7. Waghmare, P., P. Gupta, K. Gehlod, A. Shakya, and L. Malviya, "2 × 2 wideband array MIMO antenna for 5G spectral band," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 2019.

8. Chu, S., M. N. Hasan, J. Yan, and C. C. Chu, "Tri-band 2 × 2 5G MIMO antenna array," 2018 Asia-Pacific Microwave Conference (APMC), 2018.

9. Yashchyshyn, Y., et al., "28GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 2018.
doi:10.1109/LAWP.2017.2781262

10. Abbas, E. A., M. Ikram, and A. Abbosh, "Dual functional MIMO antenna system for mmWave 5G and 2 GHz 4G communications," IEEE International Symposium on Antennas and Propagation, Atlanta, July 7–12, 2019.

11. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 71, 2020.

12. I. NTT DOCOMO 5G Evolution and 6G, ed.: NTT DOCOMO, INC., 2020.

13. Rappaport, T. S., et al., "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019.
doi:10.1109/ACCESS.2019.2921522

14. Rappaport, T. S., Y. Xing, J. George, R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-Generation (5G) wireless networks — With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 18, 2017.

15. Singkang, L. M., K. A. H. Ping, H. Kunsei, K. Senthilkumar, K. Pirapaharan, A. M. A. Haidar, and P. R. P. Hoole, "Model based-testing of spatial and time domain artificial intelligence smart antenna for ultra-high frequency electric discharge detection in digital power substations," Progress In Electromagnetics Research M, Vol. 99, 91-101, 2021.
doi:10.2528/PIERM20090301

16. Singkang, L. M. B., K. A. H. Ping, and P. R. P. Hoole, "Electric discharges localization for substation fault monitoring using two elements sensor," Journal of Computational and Theoretical Nanoscience, Vol. 17, No. 2–3, 1009-1013, 2020.
doi:10.1166/jctn.2020.8759

17. Neiman, M. S., "The principle of reciprocity in antenna theory," Proceedings of the IRE, Vol. 31, No. 12, 666-671, 1943.
doi:10.1109/JRPROC.1943.233683

18. Hamdy, M. N., An Introduction to LTE Smart Base Station Antennas, M. N. Engineering (ed.), 2017.

19. Hoole, P. R., Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology: With Artificial Intelligence Application and Coding, River Publisher, 2020.

20. Pirapaharan, K., H. Kunsei, K. S. Senthilkumar, P. R. P. Hoole, and S. R. H. Hoole, "A single beam smart antenna for wireless communication in highly reflective and narrow environment," International Symposium on Fundamentals of Engineering, 2017.

21. Pirapaharan, K., H. Kunsei, K. S. Senthilkumar, P. R. P. Hoole, and S. R. H. Hoole, "A robust, 3-element triangular, reflector-less, single beam adaptive array antenna for cognitive radio network: Inter-element distance dependent beam," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 8, No. 12, 4, 2016.

22. Zhang, J., S. Zhang, X. Lin, Y. Fan, and G. F. Pedersen, "3D radiation pattern reconfigurable phased array for transmission angle sensing in 5G mobile communication," Sensor, Vol. 18, No. 4204, 2018.

23. You, X., C. Zhang, X. Tan, S. Jin, and H. Wu, "AI for 5G: Research directions and paradigms," SCIENCE CHINA Information Sciences, Vol. 62, 2018.

24. Senthilkumar, K. S., et al., "A review of a single neuron weight optimization model for adaptive beam forming," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 9, No. 3–10, 2017.