Vol. 108
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-06
Reconfigurable Uniform Impedance Active Bandpass Filter Using Coupled Lines for L-Band Satellite Communication
By
Progress In Electromagnetics Research C, Vol. 108, 103-114, 2021
Abstract
This work presents the design and implementation of a four-section reconfigurable uniform impedance resonator (UIR) active filter. UIR active filter consists of λg/4 microstrip line resonators cascaded in series with parallel coupled lines (PCLs). An additional quarter wavelength section is added to the coupled line quarter wave resonator section and gives flexibility in the coupling length. The proposed active filter provides a gain as a means of compensation to loss incurred by passive circuitry. In addition, it gives high selectivity (-70 dB) and wide stopband. The wide stopband is the result of suppression of spurious frequencies which is accomplished by using shunt stub resonators at appropriate locations in the active filter. The bandwidth reconfigurability is achieved by varying the bias currents of the active devices as well as by tuning the varactor diodes. The UIR concept with active matching is implemented on an FR4 substrate (εr = 4.4), with passband gain of around 15 dB at 1.3 GHz, and out of band rejection is better than -35 dB at twice the centre frequency of 1.3 GHz.
Citation
Shikha Swaroop Sharma, and Anjini Kumar Tiwary, "Reconfigurable Uniform Impedance Active Bandpass Filter Using Coupled Lines for L-Band Satellite Communication," Progress In Electromagnetics Research C, Vol. 108, 103-114, 2021.
doi:10.2528/PIERC20090107
References

1. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Network and Coupling Structures, McGraw-Hill, 1964.

2. Phromloungsri, R., S. Patisang, K. Srisathit, and M. Chongcheawchamnan, "A harmonic-suppression microwave bandpass filter based on an inductively compensated microstrip coupler," Asia-Pacific Microw. Conf. Proceedings, Vol. 5, No. 1, 0-3, 2005.

3. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication — Theory and Design, Springer, 2001.
doi:10.1007/978-3-662-04325-7

4. Chang, C. Y. and T. Itoh, "A modified parallel-coupled filter structure that improves the upper stopband rejection and response symmetry," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 310-314, 1991.
doi:10.1109/22.102975

5. Hong, S. and K. Chang, "A parallel-coupled microstrip bandpass filter with suppression of both the 2nd and the 3rd harmonic responses," IEEE MTT-S Int. Microw. Symp. Dig., 365-368, 2006.

6. Kuo, J. T., W. H. Hsu, and W. T. Huang, "Parallel coupled microstrip filters with suppression of harmonic response," IEEE Microw. Wirel. Components Lett., Vol. 12, No. 10, 383-385, 2002.
doi:10.1109/LMWC.2002.804559

7. Sun, S. and L. Zhu, "Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths," IEEE MTT-S Int. Microw. Symp. Dig., 2195-2198, 2006.

8. Jiang, M., M. H. Wu, and J. T. Kuo, "Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression," IEEE MTT-S Int. Microw. Symp. Dig., 687-690, 2005.

9. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, 1998.

10. Ye, C.-S., Y.-K. Su, M.-H. Weng, C.-Y. Hung, and R.-Y. Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/PIER09073002

11. Perhirin, S. and Y. Auffret, "A low consumption electronic system developed for a 10 km long all-optical extension dedicated to sea floor observatories using power-over-fiber technology and SPI protocol," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2562-2568, 2013.
doi:10.1002/mop.27916

12. Chang, Y. C., C. H. Kao, M. H. Weng, and R. Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microw. Wirel. Components Lett., Vol. 18, No. 12, 770-772, 2008.
doi:10.1109/LMWC.2008.2007691

13. Arain, S., P. Vryonides, M. A. B. Abbasi, A. Quddious, M. A. Antoniades, and S. Nikolaou, "Reconfigurable bandwidth bandpass filter with enhanced out-of-band rejection using π-section-loaded ring resonator," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 1, 28-30, 2018.
doi:10.1109/LMWC.2017.2776212

14. Bi, X. K., X. Zhang, S. W. Wong, S. H. Guo, and T. Yuan, "Design of notched-wideband bandpass filters with reconfigurable bandwidth based on terminated cross-shaped resonators," IEEE Access, Vol. 8, 37416-37427, 2020.
doi:10.1109/ACCESS.2020.2975379

15. Kheir, M., T. Kroger, and M. Hoft, "A new class of highly-miniaturized reconfigurable UWB filters for multi-band multi-standard transceiver architectures," IEEE Access, Vol. 5, 1714-1723, 2017.
doi:10.1109/ACCESS.2017.2670526

16. Kingsly, S., et al., "Compact frequency and bandwidth reconfigurable microwave filter," Wirel. Pers. Commun., Vol. 115, 1755-1768, 2020.
doi:10.1007/s11277-020-07652-0

17. Kingsly, S., et al., "Bandwidth reconfigurable microwave filter using stepped impedance c-shaped resonator," Microw. Opt. Technol. Lett., 1-5, February 2020.

18. Kumar, L. and M. S. Parihar, "A compact reconfigurable low-pass filter with wide-stopband rejection bandwidth," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 5, 401-403, 2018.
doi:10.1109/LMWC.2018.2823001

19. Lee, T. C., W. Yang, and D. Peroulis, "Reconfigurable filter design using resonators as coupling structures," 2015 IEEE MTT-S Int. Microw. Symp., IMS 2015, Vol. 2, 2-5, 2015.

20. Masood, M. H. and S. B. Suseela, "Compact band-pass filter with reconfigurable X-band using stepped impedance resonator and folded structure," J. Eng., Vol. 2018, No. 3, 162-165, 2018.
doi:10.1049/joe.2017.0796

21. Schuster, C., et al., "Performance analysis of reconfigurable band-pass filters with continuously tunable center frequency and bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4572-4583, 2017.
doi:10.1109/TMTT.2017.2742479

22. Vryonides, P., S. Nikolaou, S. Kim, and M. M. Tentzeris, "Reconfigurable dual-modeband-pass filter with switchable bandwidth using PIN diodes," Int. J. Microw. Wirel. Technol., Vol. 7, No. 6, 655-660, 2015.
doi:10.1017/S1759078714000932