Vol. 107
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-07
Mutual Coupling Reduction in Patch Antenna Array Using Combination of Shorting Pins and Metallic Walls
By
Progress In Electromagnetics Research C, Vol. 107, 157-171, 2021
Abstract
A method of loaded patch antennas with shorting pins and erected walls in between patch antenna arrays is introduced to reduce surface wave and free space wave coupling in both E and H-plane. This simple technique works equally well in both orientations by reducing coupling up to -19 dB and -15 dB (measured value) in E-plane and H-plane, respectively, as compared to a conventional patch antenna array. The scattering parameters are studied, and conclusions are made on amounts of mutually coupled power and the bandwidth of the rejection band (S12). A parametric study of the variation in the level of mutual coupling with respect to height of the wall has been carried out in both E and H-planes. The simulation results are well verified through measurements.
Citation
Irfan Ali Tunio, Yann Mahe, Tchanguiz Razban-Haghighi, and Bruno Froppier, "Mutual Coupling Reduction in Patch Antenna Array Using Combination of Shorting Pins and Metallic Walls," Progress In Electromagnetics Research C, Vol. 107, 157-171, 2021.
doi:10.2528/PIERC20082803
References

1. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetic Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

2. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetic Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

3. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 10-12, 2018.

4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable high-gain resonant cavity antenna," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1916-1921, 2019.
doi:10.1109/TAP.2019.2891232

5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. S. Member, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888

6. Dubost, G., "Influence of surface wave upon efficiency and mutual coupling between rectangular microstrip antennas," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, Dallas, TX, USA, 660–663, 1990.

7. Pozar, D. M. and P. R. Haddad, "Anomalous mutual coupling between microstrip antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 11, 1545-1549, 1994.
doi:10.1109/8.362782

8. Djordjevic, A. R. and M. M. Nikolic, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3469-3476, 2005.
doi:10.1109/TAP.2005.858847

9. Hou, D., S. X. B. Wang, L. J. J. Wang, and W. Hong, "Elimination of scan blindness with compact defected ground structures in microstrip phased array," IET Microwaves, Antennas Propag., Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037

10. Tang, S. X. M. and Y. B. S. Gao, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microwaves, Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154

11. Yang, F. and Y. Rahmat-samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) Structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

12. Rajo-iglesias, E., O. Quevedo-teruel, and L. Inclan-sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, 2008.
doi:10.1109/TAP.2008.923306

13. Beiranvand, E., M. Afsahy, and V. Sharbati, "Reduction of the mutual coupling in patch antenna arrays based on EBG by using a planar frequency-selective surface structure," Int. J. Microw. Wirel. Technol., Vol. 9, No. 2, 349-355, 2015.
doi:10.1017/S1759078715001440

14. Qiu, L., F. Zhao, K. Xiao, S. Chai, and J. Mao, "Transmit-Receive isolation improvement of antenna arrays by using EBG structures," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 93-96, 2012.

15. Sahandabadi, S. and S. V. A.-D. Makki, "Mutual coupling reduction using complementary of SRR with wire MNG structure," Microw. Opt. Technol. Lett., Vol. 61, No. 5, 1231-1234, 2019.
doi:10.1002/mop.31717

16. Mohamadzade, B., A. Lalbakhsh, R. B. V. B. Simorangkir, A. Rezaee, and R. M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetic Research, Vol. 89, 179-187, 2020.
doi:10.2528/PIERM19100703

17. Farsi, S., et al., "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

18. Ali, A., L. Neyestanak, F. Jolani, and M. Dadgarpour, "Mutual coupling reduction between two microstrip patch antennas," 2008 Canadian Conference on Electrical and Computer Engineering, Niagara Falls, 739-742, 2008.

19. Qi, H., L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, "Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 191-194, 2016.
doi:10.1109/LAWP.2015.2437995

20. Arand, B. A., A. Bazrkar, and A. Zahedi, "Design of a phased array in triangular grid with an efficient matching network and reduced mutual coupling for wide-angle scanning," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2983-2991, 2017.
doi:10.1109/TAP.2017.2690903

21. Kiani, M. and H. R. Hassani, "Wide scan phased array patch antenna with mutual coupling reduction," IET Microwaves, Antennas Propag., Vol. 12, No. 12, 1932-1938, 2018.
doi:10.1049/iet-map.2018.0155

22. Tang, J., et al., "A metasurface superstrate for mutual coupling reduction of large antenna arrays," IEEE Access, Vol. 8, 126859-126867, 2020.
doi:10.1109/ACCESS.2020.3008162

23. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3310-3318, 2016.
doi:10.1109/TAP.2016.2573860

24. Samanta, S., P. S. Reddy, and K. Mandal, "Cross-polarization suppression in probe-fed circular patch antenna using two circular clusters of shorting pins," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3177-3182, 2018.
doi:10.1109/TAP.2018.2819895

25. Sanad, H., "Effect of the shorting posts on short circuit microstrip antennas," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science, No. 2, 794-797, 1994.
doi:10.1109/APS.1994.407972

26. Targonski, S. D. and R. B. Waterhouse, "Performance of microstrip patches incorporating a single shorting post," IEEE Antennas Propag. Soc. Int. Symp., No. 1, 29-32, 1996.

27. Kishk, A. A., L. Shafai, and A. Ittipiboon, "Single-element rectangular microstrip antenna for dual frequency operation," Electron. Lett., Vol. 19, No. 8, 298-300, 1983.
doi:10.1049/el:19830207

28. Shuley, N. V. and R. B. Waterhouse, "Dual frequency microstrip rectangular patches," Electron. Lett., Vol. 28, No. 7, 606-607, 1992.
doi:10.1049/el:19920382

29. Guha, D., S. Member, and Y. M. M. Antar, "Circular microstrip patch loaded with balanced shorting pins for improved bandwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 217-219, 2006.
doi:10.1109/LAWP.2006.875280

30. Abdullah, M., Q. Li, W. Xue, G. Peng, and Y. He, "Isolation enhancement of MIMO antennas using shorting pins," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 10, 1-15, 2019.
doi:10.1080/09205071.2019.1606738

31. Li, W., P. Li, and J. Zhou, "Control of higher order harmonics and spurious modes for microstrip patch antennas," IEEE Access, Vol. 6, 34158-34165, 2018.
doi:10.1109/ACCESS.2018.2850858