Vol. 106
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-11-02
Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media
By
Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020
Abstract
Magnetic materials are found naturally in certain terrestrial and extra-terrestrial geological settings and can influence subsurface mapping and fluid transport and content estimations. With the advent of magnetic nanoparticle research there is also the possibility that these will be inputted in the environment on purpose, as research and industrial applications, or inadvertently as contaminants. The presence of magnetic materials is usually not considered in electromagnetic response modeling of saturated or partially saturated porous materials. This is because relative magnetic permeability of most natural materials is close to one, and thus should not affect propagation velocity calculations. The objective of this study was to investigate the effect of magnetic mineral inclusions on the velocity of propagation of an electromagnetic signal on porous materials saturated with water and its influence on volumetric water content estimation. The effective relative dielectric permittivity and magnetic permeability terms were modeled using Maxwell-Garnett, Polder-van Santen, Lichtenecker and Looyenga effective medium approximation equations. Data from three nonmagnetic soils saturated with water to varying degrees was used for preliminary model evaluations. The effect of magnetic minerals was tested by mixing magnetic sand with quartz sand at different proportions and measuring propagation velocity under fully water saturated conditions using Time Domain Reflectometry (TDR). Propagation velocity decreased with increasing magnetic volume fraction, while the effect of increasing magnetic fraction on attenuation factor was not markedly distinct. Water content estimations using models not accounting for magnetic inclusion substantially overestimated volumetric water content in saturated porous media.
Citation
Tairone Paiva Leao, "Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media," Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020.
doi:10.2528/PIERC20081405
References

1. Chen, T., H. Xu, Q. Xe, J. Chen, J. Ji, and H. Lu, "Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanisms for magnetic susceptibility enhancement in paleosols," Earth Planet. Sci. Lett., Vol. 240, 790-802, 2005.
doi:10.1016/j.epsl.2005.09.026

2. Fialova, H., G. Maier, E. Petrovsky, A. Kapieka, T. Boyko, and R. Schloger, "Magnetic properties of soils from sites with different geological and environmental settings," J. Appl. Geophys., Vol. 59, 273-283, 2005.
doi:10.1016/j.jappgeo.2005.10.006

3. Vatta, L. L., R. D. Sanderson, and K. Koch, "Magnetic nanoparticles: Properties and potential applications," Pure Appl. Chem., Vol. 78, 1793-1801, 2006.
doi:10.1351/pac200678091793

4. Mohammed, L., H. G. Gomaa, D. Ragab, and J. Zhu, "Magnetic nanoparticles for environmental and biomedical applications: A review," Particuology, Vol. 30, 1-14, 2017.
doi:10.1016/j.partic.2016.06.001

5. Akbarzadeh, A., M. Samiei, and S. Davaran, "Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine," Nanoscale Res. Lett., Vol. 7, 144, 2012.
doi:10.1186/1556-276X-7-144

6. Tang, S. C. N. and I. M. C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res., Vol. 47, 2613-2632, 2013.
doi:10.1016/j.watres.2013.02.039

7. Chudanicova, M. and S. M. Hutchinson, "Magnetic signature of overbank sediment in industrial impacted floodplains identified by data mining methods," Geophys. J. Int., Vol. 207, 1106-1121, 2016.
doi:10.1093/gji/ggw321

8. Wang, G., F. Ren, J. Chen, Y. Liu, F. Ye, F. Oldfield, W. Zhang, and X. Zhang, "Magnetic evidence of anthropogenic dust deposition in urban soils of Shangai, China," Chem. Erde, Vol. 77, 421-428, 2017.
doi:10.1016/j.chemer.2017.07.007

9. Picardi, G., et al. "Radar sounding of the subsurface of mars," Science, Vol. 310, 1925-1928, 2008.
doi:10.1126/science.1122165

10. Pettinelli, E., G. Vannaroni, A. Cereti, A. R. Pisani, F. Paolucci, D. Del Vento, D. Dolfi, S. Riccioli, and F. Bella, "Laboratory investigations into electromagnetic properties of magnetite/silica mixtures as Martian soil simulants," Journal of Geophysical Research, Vol. 110, E04013, 2005.
doi:10.1029/2004JE002375

11. Von Hippel, A., Dielectric and Waves, 284, Wiley, 1954.

12. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., 604, Pearson Education Inc., 2013.

13. Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman, "Review of advances in dielectric and electrical conductivity measurements using time domain reflectometry," Vadose Zone J., Vol. 2, 444-475, 2003.
doi:10.2136/vzj2003.4440

14. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone J., Vol. 2, 476-491, 2003.
doi:10.2136/vzj2003.4760

15. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Electromagnetic parameters of dielectric and magnetic mixtures evaluated by time-domain reflectometry," IEEE Geosci. Remote Sens. Lett., Vol. 5, 730-734, 2008.
doi:10.1109/LGRS.2008.2004504

16. Dalton, F. N. and M. Th. van Genuchten, "The time-domain reflectometry method for measuring soil water content and salinity," Geoderma, Vol. 38, 237-250, 1986.
doi:10.1016/0016-7061(86)90018-2

17. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time domain reflectometry of glass beads/magnetite mixtures: A time domain study," Appl. Phys. Lett., Vol. 86, 224102, 2005.
doi:10.1063/1.1935029

18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

19. Polder, D. and J. H. Van Santem, "The effective permeability of mixtures of solids," Physica XII, Vol. 5, 257-271, 1946.
doi:10.1016/S0031-8914(46)80066-1

20. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Rem. Sens., Vol. 26, 420-429, 1988.
doi:10.1109/36.3045

21. Birchak, J. P., G. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.
doi:10.1109/PROC.1974.9388

22. Zakri, T., J. P. Laurent, and M. Vauclin, "Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory," J. Physics D, Vol. 31, 1589-1594, 1998.
doi:10.1088/0022-3727/31/13/013

23. Looyenga, H., "Dielectric constant of homogenous mixtures," Mol. Phys., Vol. 9, 501-511, 1965.
doi:10.1080/00268976500100671

24. Dube, D. C., "Study of Landau-Lifshitz-Looyenga’s formula for dielectric correlation between powder and bulk," J. Phys. D: Appl. Phys., Vol. 3, 1648-1652, 1970.
doi:10.1088/0022-3727/3/11/313

25. Leao, T. P., B. D. C. Freire, V. B. Bufon, and F. F. H. Aragon, "Using Time Domain Reflectometry to estimate water content of three soil orders under savanna in Brazil," Geoderma Regional., Vol. 21, e00280, 2020.
doi:10.1016/j.geodrs.2020.e00280

26. Correa, I. C. S. and A. R. D. Elias, "Minerais pesados dos sedimentos do fundo da enseada de Caraguatatuba, Sao Paulo, Brasil," Pesquisas em Geociˆencias, Vol. 28, 37-47, 2001.
doi:10.22456/1807-9806.20166

27. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electr. Agricult., Vol. 31, 213-237, 2001.
doi:10.1016/S0168-1699(00)00184-8

28. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resour. Res., Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574

29. Topp, G. C. and W. D. Reynolds, "Time domain reflectometry: A seminal technique for measuring mass and energy in soil," Soil Till. Res., Vol. 47, 125-132, 1998.
doi:10.1016/S0167-1987(98)00083-X

30. Robinson, D. A. and S. P. Friedman, "A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials," J. Geophys. Res., Vol. 108, 2076, 2003.

31. Robinson, P., R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, "Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization," Nature, Vol. 418, 517-520, 2002.
doi:10.1038/nature00942

32. Ursula, S., L. Dominique, M. Burchard, and R. Engelmann, "The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks," J. Petrol., Vol. 49, 1161-1185, 2008.
doi:10.1093/petrology/egn021

33. Van Dam, R. L., J. M. H. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground penetrating radar," Geophysics, Vol. 78, H1-H11, 2013.
doi:10.1190/geo2012-0266.1

34. Iwauchi, K., Y. Kital, and N. Koizumil, "Magnetic and dielectric properties of Fe3O4," J. Phys. Soc. Jpn., Vol. 49, 1328-1335, 1980.
doi:10.1143/JPSJ.49.1328

35. Hotta, M., M. Hayashi, A. Nishikata, and K. Nagata, "Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz," ISIJ International, Vol. 49, 1443-1448, 2009.
doi:10.2355/isijinternational.49.1443

36. Robinson, D. A., J. P. Bell, and C. H. Batchelor, "Influence of iron minerals on the determination of soil water content using dielectric techniques," J. Hydrol., Vol. 161, 169-180, 1994.
doi:10.1016/0022-1694(94)90127-9

37. Cassidy, N. J., "Frequency-dependent attenuation and velocity characteristics of nano-to-micro scale, lossy, magnetite-rich materials," Near Surf. Geophys., Vol. 6, 341-354, 2008.
doi:10.3997/1873-0604.2008023

38. Fannin, P. C., C. N. Marin, I. Malaescu, and N. Stefu, "Microwave dielectric properties of magnetite colloidal particles in magnetic fluids," J. Phys.: Condens. Matter, Vol. 19, 036104, 2007.
doi:10.1088/0953-8984/19/3/036104

39. Schrettle, F., S. Krohns, P. Lunkenheimer, V. A. M. Brabers, and A. Loidl, "Relaxor ferroelectricity and the freezing of short-range polar order in magnetite," Phys. Rev. B, Vol. 83, 195109, 2011.
doi:10.1103/PhysRevB.83.195109

40. Angst, M., S. Adiga, S. Gorfman, M. Ziolkowski, J. Strempfer, C. Grams, M. Pietsch, and J. Hemberger, "Intrinsic ferroelectricity in charge-ordered magnetite," Crystals, Vol. 9, No. 11, 546, 2019.
doi:10.3390/cryst9110546