Vol. 105
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-17
Parallel Hardware Architecture of the 3D FDTD Algorithm with Convolutional Perfectly Matched Layer Boundary Condition
By
Progress In Electromagnetics Research C, Vol. 105, 161-174, 2020
Abstract
The finite-difference time-domain (FDTD) algorithm is a numerical stencil computation method, which is widely used in solving electromagnetic simulation problems. However, this algorithm is both computing and storage intensive, so the simulation efficiency is usually restricted in software implementation on CPUs. Recently, hardware accelerators have proved to be effective in improving the performance of various stencil computations. In this paper, we propose a hardware architecture of the 3D FDTD algorithm along with a practical convolutional perfectly matched layer (CPML) boundary condition and implement it on a field programmable gate array (FPGA). By applying the chain processing elements array and temporal parallel strategy, the proposed accelerator can achieve a maximum of 608 mega cells per second (Mcells/s), which is approximately 6 times higher than that of other reported designs on FPGAs. Moreover, the accelerator can maintain the speed above 467 Mcells/s for different grid sizes and CPML layers without modifying the hardware design, which demonstrates the performance stability and flexibility of the architecture under various applications.
Citation
Chang Kong, and Tao Su, "Parallel Hardware Architecture of the 3D FDTD Algorithm with Convolutional Perfectly Matched Layer Boundary Condition," Progress In Electromagnetics Research C, Vol. 105, 161-174, 2020.
doi:10.2528/PIERC20072803
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s Equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Jensen, M. A. and Y. Rahmat-Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1106-1113, 1994.
doi:10.1109/8.310002

3. Orjubin, G., F. Petit, E. Richalot, S. Mengue, and O. Picon, "Cavity losses modeling using lossless FDTD method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 429-431, 2006.
doi:10.1109/TEMC.2006.873854

4. Ziolkowski, R. W., "The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 375-391, 1997.
doi:10.1109/8.558653

5. Wang, X., W. Yin, Y. Yu, Z. Chen, J. Wang, and Y. Guo, "A Convolutional Perfect Matched Layer (CPML) for one-step leapfrog ADI-FDTD method and its applications to EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 5, 1066-1076, 2012.
doi:10.1109/TEMC.2012.2198067

6. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, Vol. 62, 228-235, 2012.
doi:10.14429/dsj.62.792

7. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614

8. Zygiridis, T. T., "High-order error-optimized FDTD algorithm with GPU implementation," IEEE Transactions on Magnetics, Vol. 49, No. 5, 1809-1812, 2013.
doi:10.1109/TMAG.2013.2241410

9. Cicuttin, M., L. Codecasa, B. Kapidani, R. Specogna, and F. Trevisan, "GPU accelerated time-domain discrete geometric approach method for Maxwell’s Equations on tetrahedral grids," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, 2018.
doi:10.1109/TMAG.2017.2753322

10. Livesey, M., J. F. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, "Development of a CUDA implementation of the 3D FDTD method," IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, 186-195, 2012.
doi:10.1109/MAP.2012.6348145

11. Jia, C., L. Guo, and P. Yang, "EM scattering from a target above a 1-D randomly rough sea surface using GPU-based parallel FDTD ," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 217-220, 2015.
doi:10.1109/LAWP.2014.2360415

12. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002

13. Ghouwayel, A. A. and Y. Louet, "FPGA implementation of a re-configurable FFT for multi-standard systems in software radio context," IEEE Transactions on Consumer Electronics, Vol. 55, No. 2, 950-958, 2009.
doi:10.1109/TCE.2009.5174479

14. Ingemarsson, C., P. Källström, F. Qureshi, and O. Gustafsson, "Efficient FPGA mapping of pipeline SDF FFT cores," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 9, 2486-2497, 2017.
doi:10.1109/TVLSI.2017.2710479

15. Choi, S., et al. "Design of FPGA-based LZ77 compressor with runtime configurable compression ratio and throughput," IEEE Access, Vol. 7, 149583-149594, 2019.
doi:10.1109/ACCESS.2019.2947273

16. Li, B., L. Zhang, Z. Shang, and Q. Dong, "Implementation of LZMA compression algorithm on FPGA," Electronics Letters, Vol. 50, No. 21, 1522-1524, 2014.
doi:10.1049/el.2014.1734

17. Nguyen, D. T., T. N. Nguyen, H. Kim, and H. Lee, "A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, No. 8, 1861-1873, 2019.
doi:10.1109/TVLSI.2019.2905242

18. Guo, K., et al. "Angel-eye: A complete design flow for mapping CNN onto embedded FPGA," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 37, No. 1, 35-47, 2018.
doi:10.1109/TCAD.2017.2705069

19. Fujita, Y. and H. Kawaguchi, "Full-custom PCB implementation of the FDTD/FIT dedicated computer," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1100-1103, 2009.
doi:10.1109/TMAG.2009.2012633

20. Okina, K., R. Soejima, K. Fukumoto, Y. Shibata, and K. Oguri, "Power performance profiling of 3-D stencil computation on an FPGA accelerator for efficient pipeline optimization," SIGARCH Comput. Archit. News, Vol. 43, No. 4, 9-14, 2015.
doi:10.1145/2927964.2927967

21. Sano, K., Y. Hatsuda, and S. Yamamoto, "Multi-FPGA accelerator for scalable stencil computation with constant memory bandwidth," IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 3, 695-705, 2014.
doi:10.1109/TPDS.2013.51

22. Kawaguchi, H. and S. Matsuoka, "Conceptual design of 3-D FDTD dedicated computer with dataflow architecture for high performance microwave simulation," IEEE Transactions on Magnetics, Vol. 51, No. 3, Art No. 7202404, 2015.

23. Kawaguchi, H., "Improved architecture of FDTD dataflow machine for higher performance electromagnetic wave simulation," IEEE Transactions on Magnetics, Vol. 52, No. 3, Art No. 7206604, 2016.

24. Waidyasooriya, H. M., Y. Takei, S. Tatsumi, and M. Hariyama, "Open CL-based FPGA-platform for stencil computation and its optimization methodology," IEEE Transactions on Parallel and Distributed Systems, Vol. 28, No. 5, 1390-1402, 2017.
doi:10.1109/TPDS.2016.2614981

25. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

26. Giefers, H., C. Plessl, and J. Förstner, "Accelerating finite difference time domain simulations with reconfigurable dataflow computers," SIGARCH Comput. Archit. News, Vol. 41, No. 5, 65-70, 2014.
doi:10.1145/2641361.2641372

27. Toivanen, I., T. P. Stefanski, N. Kuster, and N. Chavanne, "Comparison of CPML implementations for the GPU-accelerated FDTD solver," Progress In Electromagnetics Research B, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002