1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, Artech House, 2006.
2. Ryckaert, J., et al., "Channel model for wireless communication around human body," Electronics Letters, Vol. 40, No. 9, 543-544, 2004.
doi:10.1049/el:20040386
3. Alves, T., B. Poussot, and J. M. Laheurte, "Analytical propagation modeling of BAN channels based on the creeping-wave theory," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1269-1274, 2011.
doi:10.1109/TAP.2010.2096184
4. Bresnahan, D. and Y. Li, "Investigation of creeping wave propagation around the human head at ISM frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2767-2770, 2017.
doi:10.1109/LAWP.2017.2745461
5. Wait, J. R., "On the excitation of electromagnetic surface waves on a curved surface," IRE Transactions on Antennas and Propagation, Vol. 8, No. 4, 445-448, 1960.
doi:10.1109/TAP.1960.1144862
6. Xue, D., B. A. Garner, and Y. Li, "Investigation of short-range, broadband, on-body electromagnetic wave propagations," IET Microwaves, Antennas & Propagation., Vol. 10, No. 11, 1182-1188, 2016.
doi:10.1049/iet-map.2015.0643
7. Pourhomayoun, M., M. Fowler, and Z. Jin, "A novel method for medical implant in-body localization," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5757-5760, San Diego, CA, USA, 2012.
8. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "A compact dual band dual polarized omnidirectional antenna for ON body alications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5044-5053, 2019.
doi:10.1109/TAP.2019.2891633
9. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "Metamaterial-inspired wideband biocompatible antenna for implantable alications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1799-1805, 2018.
doi:10.1049/iet-map.2017.1143
10. Maity, S., K. R. Barman, and S. Bhattacharjee, "Silicon-based technology: Circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical alication," Microwave and Optical Technology Letters, Vol. 60, No. 1, 93-101, 2018.
doi:10.1002/mop.30925
11. Kurup, D., et al., "In-body path loss model for homogeneous human tissues," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 556-564, 2011.
doi:10.1109/TEMC.2011.2164803
12. Alomainy, A. and Y. Hao, "Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 999-1005, 2009.
doi:10.1109/TAP.2009.2014531
13. Sayrafian-Pour, K., et al., "A statistical path loss model for medical implant communication channels," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, Tokyo, Japan, 2009.
14. Petrillo, L., et al., "Analytical creeping wave model and measurements for 60 GHz body area networks," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4352-4356, 2014.
doi:10.1109/TAP.2014.2324558
15. Internet resources of biological tissue properties, Available at http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
16. Forbes, R. M., A. R. Cooper, and H. H. Mitchell, "The composition of the adult human body as determined by chemical analysis," J. Biol. Chem., Vol. 203, No. 1, 359-366, 1953.
17. Dielectric phantom recipe generator, Available at https://amri.ninds.nih.gov//cgibin/phantomrecipe.
18. Tamir, T., "Radio wave propagation along mixed paths in forest environments," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 4, 471-477, 1977.
doi:10.1109/TAP.1977.1141620
19. Li, Y., M. F. Wu, A. E. Yilmaz, and H. Ling, "Investigation of short-range radiowave propagation at HF/VHF frequencies in a forested environment," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1182-1185, 2009.