Vol. 104
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-09
Investigation of Dominant Wave Mechanism and Optimal Antenna Excitation for Body-Centric Wireless Propagations
By
Progress In Electromagnetics Research C, Vol. 104, 1-11, 2020
Abstract
Vertically- and horizontally-polarized antennas were investigated for on-body to on-body (OB2OB), in-body to in-body (IB2IB), and on-body to in-body (OB2IB) wireless propagations at frequencies of 915 MHz and 2.45 GHz. Theoretical formulations, simulations, and measurements were employed to study the effect of source antenna orientation on the attenuation of the radio frequency (RF) wave as it propagates around, inside, and through the body near the torso region. The results show that the vertical polarization is preferred for OB2OB communication, and the horizontal polarization is better for IB2IB communication. Furthermore, the dominant propagation mechanism and optimum antenna excitation for OB2IB communication are identified to be distance-dependent. The horizontally-polarized dipole is preferred at a shorter distance while the vertically-polarized dipole is preferred at a larger distance away from the source. The observed results were explained using the estimated attenuation rates of the different propagation mechanisms.
Citation
Daniel Ugochukwu Agu, Mary Leece, Jose Alcala-Medel, Anna Sahdev, Jim Lim, Matthew Olsen, Bithiah Ngan, Youngwook Kim, and Yang Li, "Investigation of Dominant Wave Mechanism and Optimal Antenna Excitation for Body-Centric Wireless Propagations," Progress In Electromagnetics Research C, Vol. 104, 1-11, 2020.
doi:10.2528/PIERC20051605
References

1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, Artech House, 2006.

2. Ryckaert, J., et al., "Channel model for wireless communication around human body," Electronics Letters, Vol. 40, No. 9, 543-544, 2004.
doi:10.1049/el:20040386

3. Alves, T., B. Poussot, and J. M. Laheurte, "Analytical propagation modeling of BAN channels based on the creeping-wave theory," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1269-1274, 2011.
doi:10.1109/TAP.2010.2096184

4. Bresnahan, D. and Y. Li, "Investigation of creeping wave propagation around the human head at ISM frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2767-2770, 2017.
doi:10.1109/LAWP.2017.2745461

5. Wait, J. R., "On the excitation of electromagnetic surface waves on a curved surface," IRE Transactions on Antennas and Propagation, Vol. 8, No. 4, 445-448, 1960.
doi:10.1109/TAP.1960.1144862

6. Xue, D., B. A. Garner, and Y. Li, "Investigation of short-range, broadband, on-body electromagnetic wave propagations," IET Microwaves, Antennas & Propagation., Vol. 10, No. 11, 1182-1188, 2016.
doi:10.1049/iet-map.2015.0643

7. Pourhomayoun, M., M. Fowler, and Z. Jin, "A novel method for medical implant in-body localization," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5757-5760, San Diego, CA, USA, 2012.

8. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "A compact dual band dual polarized omnidirectional antenna for ON body alications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5044-5053, 2019.
doi:10.1109/TAP.2019.2891633

9. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "Metamaterial-inspired wideband biocompatible antenna for implantable alications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1799-1805, 2018.
doi:10.1049/iet-map.2017.1143

10. Maity, S., K. R. Barman, and S. Bhattacharjee, "Silicon-based technology: Circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical alication," Microwave and Optical Technology Letters, Vol. 60, No. 1, 93-101, 2018.
doi:10.1002/mop.30925

11. Kurup, D., et al., "In-body path loss model for homogeneous human tissues," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 556-564, 2011.
doi:10.1109/TEMC.2011.2164803

12. Alomainy, A. and Y. Hao, "Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 999-1005, 2009.
doi:10.1109/TAP.2009.2014531

13. Sayrafian-Pour, K., et al., "A statistical path loss model for medical implant communication channels," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, Tokyo, Japan, 2009.

14. Petrillo, L., et al., "Analytical creeping wave model and measurements for 60 GHz body area networks," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4352-4356, 2014.
doi:10.1109/TAP.2014.2324558

15. Internet resources of biological tissue properties, Available at http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.

16. Forbes, R. M., A. R. Cooper, and H. H. Mitchell, "The composition of the adult human body as determined by chemical analysis," J. Biol. Chem., Vol. 203, No. 1, 359-366, 1953.

17. Dielectric phantom recipe generator, Available at https://amri.ninds.nih.gov//cgibin/phantomrecipe.

18. Tamir, T., "Radio wave propagation along mixed paths in forest environments," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 4, 471-477, 1977.
doi:10.1109/TAP.1977.1141620

19. Li, Y., M. F. Wu, A. E. Yilmaz, and H. Ling, "Investigation of short-range radiowave propagation at HF/VHF frequencies in a forested environment," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1182-1185, 2009.