Vol. 106
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-29
Proposal of a New Efficient OR/XOR Logic Gates and All-Optical Nonlinear Switch in 2D Photonic Crystal Lattices
By
Progress In Electromagnetics Research C, Vol. 106, 187-197, 2020
Abstract
The aim of this paper was to propose and design a photonic crystal drop filter based on ring resonators and study its properties numerically. This structure is constituted in a two-dimensional square lattice. The resonant wavelengths of the PCRR proposed are λ = 1.553 μm, and the extraction efficiency exceeds 99% with a quality factor of 5177. To study the all-optical OR and XOR logic gate function, we calculated the electric field distribution of the 2D photonic crystal for the 1.553 μm signal light. In order to have a large selectivity of filtering and also of having a fast switching in the field of nonlinearity, we increase the number of ring resonators, and the latter are used for designing all optical logic gates which work using the Kerr effect equal to 10-6 m2/w.
Citation
Lila Mokhtari, Hadjira Abri Badaoui, Mehadji Abri, Moungar Abdelbasset, Farah Lallam, and Bachir Rahmi, "Proposal of a New Efficient OR/XOR Logic Gates and All-Optical Nonlinear Switch in 2D Photonic Crystal Lattices," Progress In Electromagnetics Research C, Vol. 106, 187-197, 2020.
doi:10.2528/PIERC20051501
References

1. Kim, S. H., H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, and Y. H. Lee, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett., Vol. 81, 2499-2501, 2002.
doi:10.1063/1.1510583

2. Dinesh Kumar, V., T. Srinivas, and A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits," Photon. Nanostruct., Vol. 2, 199-206, 2004.
doi:10.1016/j.photonics.2004.11.001

3. Qiang, Z., W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express, Vol. 15, 1823-1831, 2007.
doi:10.1364/OE.15.001823

4. Robinson, S. and R. Nakkeeran, "Investigation on two dimensional photonic crystal resonant cavity based band pass filter," Optik, Vol. 123, 451-457, 2012.
doi:10.1016/j.ijleo.2011.05.004

5. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, 167-170, 2012.
doi:10.1016/j.ijleo.2011.04.001

6. Alipour-Banaei, H., F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, "T-shaped channel drop filter based onphotonic crystal ring resonator," Optik, Vol. 125, 4718-4721, 2014.
doi:10.1016/j.ijleo.2014.04.084

7. Alipour-Banaei, H., F. Mehdizadeh, and S. Serajmohammadi, "A novel 4-channel demultiplexer based on photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.117.

8. Alipour Banaeia, H., S. Seraj mohammadib, and F. Mehdizadehc, "Alloptical NOR and NAND gate based on nonlinear photonic crystal ring resonators," Optik, Vol. 125, 5701-5704, 2014.
doi:10.1016/j.ijleo.2014.06.013

9. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filter based on photonic crystal ring resonators," Optics Communications, Vol. 285, 368-372, 2012.
doi:10.1016/j.optcom.2011.09.068

10. Birjandi, M. A. M. and M. R. Rakhshani, "A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.128.

11. Saidani, N., W. Belhadj, and F. Abdel Malek, "Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena," Optical Quantum Electron., Vol. 47, 1829-1846, 2015.
doi:10.1007/s11082-014-0047-4

12. Isfahani, B. M., T. Ahamdi Tameh, N. Granpayeh, and A. M. Javan, "All optical NOR gate based on nonlinear photonic crystal microring resonators," Optical Society of America, Vol. 26, 1097-102, May 2009.
doi:10.1364/JOSAB.26.001097

13. Moungar, A., H. Badaoui, and M. Abri, "16-channels wavelength efficient demultiplexing around 1.31/1.55 µm in 2D photonic crystal slab," Optik, 2019, https://doi.org/10.1016/j.ijleo.2019.04.032.

14. Skauli, T., P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," Journal of Applied Physics, Vol. 94, No. 10, 6447-6455, 2003.
doi:10.1063/1.1621740

15. Mohammadi, M. and M. Seifouri, "A new proposal for a high-performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems," Optical and Quantum Electronics, Vol. 51, 350, 2019, https://doi.org/10.1007/s11082-019-2061-z.
doi:10.1007/s11082-019-2061-z

16. Ma, Z. and K. Ogusu, "Channel drop filters using photonic crystal Fabry-Perot resonators," Optics Communications, Vol. 284, No. 5, 1192-1196, March 2011.
doi:10.1016/j.optcom.2010.10.050

17. Delphi, G., S. Olyaee, M. Seifouri, and A. Mohebzadeh-Bahabady, "Design of an add filter and a 2-channel optical demultiplexer with high-quality factor based on nano-ring resonator," Journal of Computational Electronics, Vol. 4, 2019.

18. Hsiao, F. L. and C. Lee, "A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 107-108, 2009.

19. Andalib, P. and N. Granpayeh, "Optical add/drop filter based on dual curved photonic crystal resonator," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 170-171, 2008.

20. Gupta, N. D. and V. Janyani, "Dense wavelength division Demultiplexing using photonic crystal waveguides based on cavity resonance," Optik, Vol. 125, 5833-5836, 2014.
doi:10.1016/j.ijleo.2014.07.024

21. Radhouene, M., M. Najjar, M. Chhipa, S. Robinson, and B. Suthar, "Performance optimization of six channels WDM demultiplexer based on photonic crystal structure," Journal of Ovonic Research, Vol. 13, No. 5, 291-297, 2017.

22. Talebzadeh, R., M. Soroosh, and T. Daghooghi, "A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity," IETE Journal of Research, Vol. 62, No. 6, 866-872, 2016.
doi:10.1080/03772063.2016.1217175

23. Cuesta-Soto, F. L., et al. "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express, Vol. 12, 161-167, 2004.
doi:10.1364/OPEX.12.000161

24. Grande, M., et al. "Optical filter with very large stopband (≈ 300 nm) based on a photonic-crystal vertical-directional coupler," Opt. Lett., Vol. 34, 3292-3294, 2009.
doi:10.1364/OL.34.003292

25. Stomeo, T., et al. "Optical filter based on two coupled PhC GaAs-membranes," Opt. Lett., Vol. 35, 411-413, 2010.
doi:10.1364/OL.35.000411

26. Rahmati, A. T. and N. Granpayeh, "Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler," Optik, Vol. 122, No. 6, 2011.
doi:10.1016/j.ijleo.2010.04.004

27. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
doi:10.2528/PIERL12072401

28. Calo, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip," Journal of the Optical Society of America B: Optical Physics, Vol. 31, No. 3, 517-525, 2014.
doi:10.1364/JOSAB.31.000517

29. Shirdel, M. and M. A. Mansouri-Birjandi, "Photonic crystal all-optical switch based on a nonlinear cavity," Optik, Vol. 127, No. 8, 3955-3958, 2016.
doi:10.1016/j.ijleo.2016.01.114

30. Geraili, M. R., et al. "A proposal for an all optical full adder using nonlinear photonic crystal ring resonators," Optik, Vol. 199, Article 163359, 2019.

31. Meng, Z.-M., et al. "Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy," 2020 J. Phys. D: Appl. Phys., Vol. 53, 205105, 2020.
doi:10.1088/1361-6463/ab768c

32. Ooka, Y., et al. "Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolighography," Opt. Express, Vol. 25, No. 2, 1521-1528, 2017.
doi:10.1364/OE.25.001521

33. Dong, G., Y. Wang, and X. Zhang, "High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity," Optics Letters, Vol. 43, No. 24, 5977-5980, 2018.
doi:10.1364/OL.43.005977