Vol. 104
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-07
A Study of an Inversion Model for Sea Ice Thickness Retrieval Using Simulated Annealing
By
Progress In Electromagnetics Research C, Vol. 104, 143-155, 2020
Abstract
Previously, an inverse microwave scattering model based on radiative transfer was developed for the retrieval of sea ice thickness using radar backscatter data. The model, called the Radiative Transfer Inverse Scattering Model (RTISM), is a combination of the Radiative Transfer-Dense Medium Phase and Amplitude Correction Theory (RT-DMPACT) forward model and the Levenberg-Marquardt Algorithm (LMA). In this paper, the LMA in the RTISM is replaced with Simulated Annealing (SA) as the optimizer to allow a wider range of inversion capability. SA is a global optimizer, and its settings make it convenient to switch between different target parameters to be optimized for inversion. In this study, the model will first be tested using different data sets to verify its applicability. Next, the model is used to estimate the sea ice thickness around Ross Island, Antarctica using data from ground truth measurements together with satellite data from Radarsat-1 from the year 2006. In order to further validate the model, the data collected from measurements performed during an experiment to grow an ice sheet within a refrigerated facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) are used to perform the retrieval of saline ice thickness. Preliminary results show that the new model performs as expected and shows potential. However, there are still limitations to the inverse model, and further improvements in the future need to be considered.
Citation
Yu Jen Lee, Kee Choon Yeong, and Hong-Tat Ewe, "A Study of an Inversion Model for Sea Ice Thickness Retrieval Using Simulated Annealing," Progress In Electromagnetics Research C, Vol. 104, 143-155, 2020.
doi:10.2528/PIERC20042001
References

1. Turner, J. and J. Overland, "Contrasting climate change in the two polar regions," Polar Research, Vol. 28, 146-164, 2009.
doi:10.1111/j.1751-8369.2009.00128.x

2. Rack, W. and H. Rott, "Further retreat of the northern Larsen Ice Shelf and collapse of Larsen B," FRISP Report, Vol. 14, 2002.

3. Martin-Mikle, C. J. and D. B. Fagre, "Glacier recession since the Little Ice Age: Implications for water storages in a Rocky Mountain landscape," Arctic, Antarctic, and Alpine Research, Vol. 51, No. 1, 280-289, 2019.
doi:10.1080/15230430.2019.1634443

4. Stroeve, J. and D. Notz, "Changing state of Arctic sea ice across all seasons," Environmental Research Letters, Vol. 13, No. 10, 1-23, 2018.
doi:10.1088/1748-9326/aade56

5. Maykut, G. A., "Energy exchange over young sea ice in the central Arctic," Journal of Geophysical Research, Vol. 83, No. C7, 3646-3658, 1978.
doi:10.1029/JC083iC07p03646

6. Golden, K. M., M. Cheney, K. H. Ding, A. K. Fung, T. C. Grenfell, D. Isaacson, J. A. Kong, S. V. Nghiem, J. Sylvester, and D. P. Winebrenner, "Forward electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1655-1674, 1998.
doi:10.1109/36.718637

7. Golden, K. M., D. Borup, M. Cheney, E. Cherkaeva, M. S. Dawson, K. H. Ding, A. K. Fung, D. Isaacson, S. A. Johnson, A. K. Jordan, J. A. Kong, R. Kwok, S. V. Nghiem, R. G. Onstott, J. Sylvester, D. P. Winebrenner, and I. H. H. Zabel, "Inverse electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1675-1704, 1998.
doi:10.1109/36.718638

8. Lee, Y. J., W. K. Lim, and H.-T. Ewe, "A study of an inversion model for sea ice thickness retrieval in Ross Island, Antarctica," Progress In Electromagnetics Research, Vol. 111, 381-406, 2011.
doi:10.2528/PIER10100411

9. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Thickness retrieval using time series electromagnetic measurements of laboratory grown saline ice," 1996 International Geoscience and Remote Sensing Symposium (IGARSS’96), Vol. 2: Remote Sensing for a Sustainable Future, 1208-1210, 1996.

10. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Saline ice thickness retrieval using time series c-band polarimetric radar measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1589-1598, 1998.
doi:10.1109/36.718862

11. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 1986.

12. Albert, M. D., T. E. Tan, H. T. Ewe, and H. T. Chuah, "A theoretical and measurement study of sea ice and ice shelf in Antarctica as electrically dense media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 14, 1973-1981, 2005.
doi:10.1163/156939305775570639

13. Chuah, H. T., S. Tjuatja, A. K. Fung, and J. W. Bredow, "A phase matrix for a dense discrete random medium: Evaluation of volume scattering coefficient," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1137-1143, 1996.
doi:10.1109/36.536529

14. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.

15. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 1. Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley Publishing Company, Massachusetts, 1981.

16. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.

17. Fung, A. K. and H. J. Eom, "A study of backscattering and emission from closely packed inhomogeneous media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 5, 761-767, 1985.
doi:10.1109/TGRS.1985.289395

18. Ewe, H. T. and H. T. Chuah, "An analysis of the scattering of discrete scatterers in an electrically dense medium," 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS’98), Vol. 5, 2378-2380, July 6–10, 1998.

19. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, 1994.

20. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 3, From Theory to Applications, Addison-Wesley Publishing Company, Massachusetts, 1986.

21. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 356-369, 1992.
doi:10.1109/36.134085

22. Ewe, H. T., H. T. Chuah, and A. K. Fung, "A backscatter model for a dense discrete medium: Analysis and numerical results," Remote Sensing of Environment, Vol. 65, No. 2, 195-203, 1998.
doi:10.1016/S0034-4257(98)00027-3

23. Goffe, W. L., G. D. Ferrier, and J. Rogers, "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Vol. 60, No. 1–2, 65-99, 1994.
doi:10.1016/0304-4076(94)90038-8

24. Corana, A., M. Marchesi, C. Martini, and S. Ridella, "Minimizing multimodal functions of continuous variables with the ‘simulated annealing algorithm," ACM Transactions on Mathematical Software, Vol. 13, No. 3, 262-280, 1987.
doi:10.1145/29380.29864

25. Nghiem, S. V., R. Kwok, S. H. Yueh, A. J. Gow, D. K. Perovich, J. A. Kong, and C. C. Hsu, "Evolution in polarimetric signatures of thin saline ice under constant growth," Radio Science, Vol. 32, No. 1, 127-151, 1997.
doi:10.1029/96RS03051