1. Lee, C., W. Wang, B. K. Wilson, M. Connett, and M. D. Keller, "Detecting adulterants in milk with lower cost mid-infrared and raman spectroscopy," Optics and Biophotonics in Low-Resource Settings IV, Vol. 10485, 104850F, International Society for Optics and Photonics, 2018.
2. Bogdanov, S. and P. Martin, "Honey authenticity," Mitteilungen aus Lebensmitteluntersuchung und Hygiene, Vol. 93, No. 3, 232-254, 2002.
3. Mai, Z., B. Lai, M. Sun, J. Shao, and L. Guo, "Food adulteration and traceability tests using stable carbon isotope technologies," Tropical Journal of Pharmaceutical Research, Vol. 18, No. 8, 2019.
4. Cabanero, A. I., J. L. Recio, and M. Ruperez, "Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection," Journal of Agricultural and Food Chemistry, Vol. 54, No. 26, 9719-9727, 2006.
5. Perez, R. A., C. Sanchez-Brunete, R. M. Calvo, and J. L. Tadeo, "Analysis of volatiles from spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry," Journal of Agricultural and Food Chemistry, Vol. 50, No. 9, 2633-2637, 2002.
6. Ulloa, P. A., R. Guerra, A. M. Cavaco, A. M. R. Da Costa, A. C. Figueira, and A. F. Brigas, "Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy," Computers and Electronics in Agriculture, Vol. 94, 1-11, 2013.
7. Subari, N., J. M. Saleh, A. M. Shakaff, and A. Zakaria, "A hybrid sensing approach for pure and adulterated honey classification," Sensors, Vol. 12, No. 10, 14022-14040, 2012.
8. Arroyo Negrete, M. A., K. Wrobel, F. J. Acevedo Aguilar, E. Yanez Barrientos, A. R. Corrales Escobosa, and K. Wrobel, "Determination of fatty acid methyl esters in cosmetic castor oils by flow injection — electrospray ionization — high-resolution mass spectrometry," International Journal of Cosmetic Science, Vol. 40, No. 3, 295-302, 2018.
9. Escuderos, M. E., S. Sanchez, and A. Jimenez, "Quartz Crystal Microbalance (QCM) sensor arrays selection for olive oil sensory evaluation," Food Chemistry, Vol. 124, No. 3, 857-862, 2011.
10. Fang, G., J. Y. Goh, M. Tay, H. F. Lau, and S. F. Yau Li, "Characterization of oils and fats by 1 h nmr and gc/ms fingerprinting: Classification, prediction and detection of adulteration," Food Chemistry, Vol. 138, No. 2–3, 1461-1469, 2013.
11. Gan, H. L., Y. B. Che Man, C. P. Tan, I. Nor Aini, and S. A. H. Nazimah, "Characterisation of vegetable oils by surface acoustic wave sensing electronic nose," Food Chemistry, Vol. 89, No. 4, 507-518, 2005.
12. Apetrei, I. M. and C. Apetrei, "Detection of virgin olive oil adulteration using a voltammetric e-tongue," Computers and Electronics in Agriculture, Vol. 108, 148-154, 2014.
13. Chakraborti, H., S. Sinha, S. Ghosh, and S. K. Pal, "Interfacing water soluble nanomaterials with uorescence chemosensing: Graphene quantum dot to detect hg2+ in 100% aqueous solution," Materials Letters, Vol. 97, 78-80, 2013.
14. Jain, S., P. K. Mishra, V. V. Thakare, and J. Mishra, "Microstrip moisture sensor based on microstrip patch antenna," Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018.
15. Fernandez-Salmeron, J., A. Rivadeneyra, M. A. Carvajal Rodrıguez, L. F. Capitan-Vallvey, and A. J. Palma, "HF RFID tag as humidity sensor: Two different approaches," IEEE Sensors Journal, Vol. 15, No. 10, 5726-5733, 2015.
16. Saadat, W., S. A. Raurale, G. A. Conway, and J. McAllister, "User identification through wearable antenna characteristics at 2.45 GHz," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
17. Islam, M. T., M. N. Rahman, M. S. J. Singh, and M. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor," IEEE Access, Vol. 6, 4118-4126, 2018.
18. Salim, A. and S. Lim, "Review of recent metamaterial micro uidic sensors," Sensors, Vol. 18, No. 1, 232, 2018.
19. Lu, F., Q. Tan, Y. Ji, Q. Guo, Y. Guo, and J. Xiong, "A novel metamaterial inspired high-temperature microwave sensor in harsh environments," Sensors, Vol. 18, No. 9, 2879, 2018.
20. Bui, T. S., T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. P. Lee, T. Nagao, and C. V. Hoang, "Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules," Scientific Reports, Vol. 6, 32123, 2016.
21. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, 2013.
22. Perez, M. D., G. Thomas, S. R. M. Shah, J. Velander, N. B. Asan, P. Mathur, M. Nasir, D. Nowinski, D. Kurup, and R. Augustine, "Preliminary study on microwave sensor for bone healing follow-up after cranial surgery in newborns," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
23. Shah, S. R. M., J. Velander, P. Mathur, M. D. Perez, N. B. Asan, D. G. Kurup, T. Blokhuis, and R. Augustine, "Penetration depth evaluation of split ring resonator sensor using in-vivo microwave reflectivity and ultrasound measurements," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
24. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019.
25. Rajendran, J. and S. K. Menon, "On the miniaturization of log periodic koch dipole antenna using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 63, 107-113, 2016.
26. Casula, G. A., P. Maxia, G. Mazzarella, and G. Montisci, "Design of a printed log-periodic dipole array for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 38, 15-26, 2013.
27. Saurav, K., D. Sarkar, and K. V. Srivastava, "Dual-band circularly polarized cavity-backed crossed-dipole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 52-55, 2014.
28. Abdo-Sanchez, E., J. Esteban, T. M. Martin-Guerrero, C. Camacho-Penalosa, and P. S. Hall, "A novel planar log-periodic array based on the wideband complementary strip-slot element," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5572-5580, 2014.
29. Carrel, R., "The design of log-periodic dipole antennas," 1958 IRE International Convention Record, Vol. 9, 61-75, IEEE, 1966.
30. Nunes, A. C., X. Bohigas, and J. Tejada, "Dielectric study of milk for frequencies between 1 and 20 GHz," Journal of Food Engineering, Vol. 76, No. 2, 250-255, 2006.
31. Barbosa-Canovas, G. V., EOLSS: Food Engineering, United Nations Educational, 2005.
32. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. B. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, 2018.
33. Hu, L., K. Toyoda, and I. Ihara, "Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition," Journal of Food Engineering, Vol. 88, No. 2, 151-158, 2008.
34. Puranik, S., A. Kumbharkhane, and S. Mehrotra, "Dielectric properties of honey-water mixtures between 10 MHz to 10 GHz using time domain technique," Journal of Microwave Power and Electromagnetic Energy, Vol. 26, No. 4, 196-201, 1991.
35. Ahmed, J., S. T. Prabhu, G. S. V. Raghavan, and M. Ngadi, "Physico-chemical, rheological, calorimetric and dielectric behavior of selected indian honey," Journal of Food Engineering, Vol. 79, No. 4, 1207-1213, 2007.
36. Guo, W., X. Zhu, Y. Liu, and H. Zhuang, "Sugar and water contents of honey with dielectric property sensing," Journal of Food Engineering, Vol. 97, No. 2, 275-281, 2010.
37. Guo, W., Y. Liu, X. Zhu, and S. Wang, "Dielectric properties of honey adulterated with sucrose syrup," Journal of Food Engineering, Vol. 107, No. 1, 1-7, 2011.