Vol. 101
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-24
CPW Fed Wideband Bowtie Slot Antenna on PET Substrate
By
Progress In Electromagnetics Research C, Vol. 101, 147-158, 2020
Abstract
In this article, a new wideband bowtie shaped slot antenna is realized on a flexible polyethylene terephthalate (PET). The slotted bowtie design is implemented with an asymmetric bow-tie flare angle and a larger feeding neck with a metal strip inside the bowtie slot to achieve a wider bandwidth and a higher gain. The designed free space antenna is fabricated using inkjet printing and tested. The fabricated antenna operates over 2.1-4.35 GHz frequency range (69.77% fractional bandwidth) which covers WLAN, WiMax, and most of the 3G and 4G frequency bands. Further, the antenna exhibits an omnidirectional radiation pattern with a peak gain of 6.3 dBi at 4.35 GHz. The bending test of the fabricated device reveals adequate flexibility without significant antenna performance degradation. Moreover, the antenna tunability for any mounting structure application is also investigated by simulating another version of the parent antenna (free space antenna) for drywall mounting applications. The tuned antenna covers a similar frequency band as a free space antenna maintaining the desired radiation performances. The compact size, higher bandwidth, omnidirectional pattern with a higher peak gain and flexible properties make the antenna design suitable for mounting structure for Internet of Things (IoT) applications.
Citation
Manjurul Ahsan Riheen, Tuan Nguyen, Tonmoy Kumar Saha, Tutku Karacolak, and Praveen Kumar Sekhar, "CPW Fed Wideband Bowtie Slot Antenna on PET Substrate," Progress In Electromagnetics Research C, Vol. 101, 147-158, 2020.
doi:10.2528/PIERC20031402
References

1. Hester, J. G. and M. M. Tentzeris, "Inkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4763-4773.
doi:2016

2. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer for conformal applications," International Journal of Antennas and Propagation, Vol. 2018, 1-7, 2018.

3. Li, X., M. M. Honari, Y. Fu, A. Kumar, H. Saghlatoon, P. Mousavi, and H.-J. Chung, "Self-reinforcing graphene coatings on 3D printed elastomers for flexible radio frequency antennas and strain sensors," Flexible and Printed Electronics, Vol. 2, No. 3, 035001, 2017.

4. Cosker, M., L. Lizzi, F. Ferrero, R., Staraj, and J.-M. Ribero, "Realization of 3-D flexible antennas using liquid metal and additive printing technologies," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 971-974, 2016.

5. Abutarboush, H. F. and A. Shamim, "Based inkjet-printed tri-band U-slot monopole antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1234-1237, 2012.

6. Mansour, A., N. Shehata, B. Hamza, and M. Rizk, "Efficient design of flexible and low cost paper-based inkjet-printed antenna," International Journal of Antennas and Propagation, Vol. 2015, 2015.

7. Anagnostou, D. E., A. A. Gheethan, A. K. Amert, and K. W. Whites, "A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications," Journal of Display Technology, Vol. 6, No. 11, 558-564, 2010.

8. Hassan, A., S. Ali, G. Hassan, J. Bae, and C. H. Lee, "Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications," Microsystem Technologies, Vol. 23, No. 8, 3701-3709, 2017.

9. Guo, X., Y. Hang, Z. Xie, C. Wu, L. Gao, and C. Liu, "Flexible and wearable 2.45 GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate," Microwave and Optical Technology Letters, Vol. 59, No. 1, 204-208, 2017.

10. Huang, C.-Y. and D.-Y. Lin, "CPW-fed bowtie slot antenna for ultra-wideband communications," Electronics Letters, Vol. 42, No. 19, 1073-1074, 2006.

11. Bhaskar, V. S., E. L. Tan, and L. K. H. Holden, "Design of wideband bowtie slot antenna using sectorially modified gielis curves," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2237-2240, 2018.

12. Mazaheri, M., N. Amani, and A. Jafargholi, "Wideband printed slot bowtie antenna using symmetric vias," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1301-1304, 2016.

13. Pierce, R. G., A. J. Blanchard, and R. M. Henderson, "Broadband planar modified aperture bowtie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1432-1435, 2013.

14. Tsai, L.-C., "A triple-band bow-tie-shaped CPW-fed slot antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 47, 167-171, 2014.

15. Xu, L., L. Li, and W. Zhang, "Study and design of broadband bowtie slot antenna fed with asymmetric CPW," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 760-765, 2014.

16. Chen, Y.-L., C.-L. Ruan, and L. Peng, "A novel ultra-wideband bow-tie slot antenna in wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 1, 101-108, 2008.

17. Yoon, J. H. and Y. C. Lee, "Modified bowtie slot antenna for the 2.4/5.2/5.8 GHz WLAN bands with a rectangular tuning stub," Microwave and Optical Technology Letters, Vol. 53, No. 1, 126-130, 2011.

18. Dayo, Z. A., Q. Cao, P. Soothar, M. M. Lodro, and Y. Li, A Compact Coplanar Waveguide Feed Bowtie Slot Antenna for WIMAX, C and X Band Applications, 1-3, IEEE, 2019.

19. Yamamoto, M. and T. Nojima, Design of a Leaf-shaped Bowtie Slot Antenna Electromagnetically Fed by a Microstrip Line, 261-262, IEEE, 2014.

20. Sagnard, F. and F. Rejiba, "Wide band coplanar waveguide-fed bowtie slot antenna for a large range of ground penetrating radar applications," IET Microwaves, Antennas and Propagation, Vol. 5, No. 6, 734-739, 2011.

21. Sallam, M. O., S. M. Kandil, V. Volski, G. A. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bowtie slot antenna for WLAN/WiMax systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, 2017.

22. Liu, H., S. Zhu, P. Wen, X. Xiao, W. Che, and X. Guan, "Flexible CPW-fed fishtail-shaped antenna for dual-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 770-773, 2014.

23. Sahoo, R. and D. Vakula, "Bow-tie-shaped wideband conformal antenna with wide-slot for GPS application," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 27, No. 1, 80-93, 2019.

24. Durgun, A. C., M. S. Reese, C. A. Balanis, C. R. Birtcher, D. R. Allee, and S. Venugopal, Book Flexible Bowtie Antennas with Reduced Metallization, 50-53, IEEE, 2011.

25. Farooqui, M. F. and A. Shamim, Dual Band Inkjet Printed Bowtie Slot Antenna on Leather, 3287-3290, IEEE, 2013.

26. Choudhary, E., S. Sharma, and P. Yadav, A Modified Wideband Bow-tie Antenna with DGS for Wireless Fidelity Range, 1-5, IEEE, 2018.

27. Salonen, P., J. Kim, and Y. Rahmat-Samii, Dual-band E-shaped Patch Wearable Textile Antenna, 466-469, IEEE, 2005.

28. Singh, N., A. K. Singh, and V. K. Singh, "Design and performance of wearable ultrawide band textile antenna for medical applications," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1553-1557, 2015.

29. Krykpayev, B., M. F. Farooqui, R. M. Bilal, M. Vaseem, and A. Shamim, "A wearable tracking device inkjet-printed on textile," Microelectronics Journal, Vol. 65, 40-48, 2017.

30. Mansour, A., M. Azab, and N. Shehata, Flexible Paper-based Wideband Antenna for Compact-size IoT Devices, 426-429, IEEE, 2017.

31. Zahran, S. R., Z. Hu, and M. A. Abdalla, A Flexible Circular Polarized Wide Band Slot Antenna for Indoor IoT Applications, 1163-1164, IEEE, 2017.

32. Lee, C.-H., S.-Y. Chen, and P. Hsu, Compact Modified Bowtie Slot Antenna Fed by CPW for Ultra-wideband Applications, 1-4, IEEE, 2009.

33. Qu, S.-W. and C.-L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.

34. Saha, T. K., T. N. Knaus, A. Khosla, and P. K. Sekhar, "A CPW-fed flexible UWB antenna for IoT applications," Microsystem Technologies, 1-7, 2018.

35. Elobaid, H. A. E., S. K. A. Rahim, M. Himdi, X. Castel, and M. A. Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1333-1336, 2016.

36. Jilani, S. F. and A. Alomainy, Planar Millimeter-wave Antenna on Low-cost Flexible PET Substrate for 5G Applications, 1-3, IEEE, 2016.

37. Lee, C. M., Y. Kim, Y. Kim, I. K. Kim, and C. W. Jung, "A flexible and transparent antenna on a polyamide substrate for laptop computers," Microwave and Optical Technology Letters, Vol. 57, No. 5, 1038-1042, 2015.

38. Riheen, M. A., T. K. Saha, and P. K. Sekhar, "Inkjet printing on PET substrate," Journal of the Electrochemical Society, Vol. 166, No. 9, B3036-B3039, 2019.

39. Saha, T. K., C. Goodbody, T. Karacolak, and P. K. Sekhar, "A compact monopole antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 1, 182-186, 2019.

40. De Cos Gomez, M., H. F. Alvarez, C. G. Gonzalez, B. P. Valcarce, J. Olenick, and F. Las-Heras, Ultra-thin Compact Flexible Antenna for IoT Applications, 1-4, IEEE, 2019.

41. Katehi, P. and N. Alexopoulos, "On the effect of substrate thickness and permittivity on printed circuit dipole properties," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 1, 34-39, 1983.

42. Thajudeen, C., A. Hoorfar, F. Ahmad, and T. Dogaru, "Measured complex permittivity of walls with different hydration levels and the effect on power estimation of TWRI target returns," Progress In Electromagnetics Research B, Vol. 30, 177-199, 2011.

43. Common, L. T., Propagation losses through common building materials 2.4 GHz vs 5 GHz, E10589, Magis Network, Inc., 2002.