Vol. 102
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-12
Multipole-Based Cable Braid Electromagnetic Penetration Model: Magnetic Penetration Case
By
Progress In Electromagnetics Research C, Vol. 102, 1-11, 2020
Abstract
The goal of this paper is to present, for the first time, calculations of the magnetic penetration case of a first principles multipole-based cable braid electromagnetic penetration model. As a first test case, a one-dimensional array of perfect electrically conducting wires, for which an analytical solution is known, is investigated: we compare both the self-inductance and the transfer inductance results from our first principles cable braid electromagnetic penetration model to those obtained using the analytical solution. These results are found in good agreement up to a radius to half spacing ratio of about 0.78, demonstrating a robustness needed for many commercial and non-commercial cables. We then analyze a second set of test cases of a square array of wires whose solution is the same as the one-dimensional array result and of a rhomboidal array whose solution can be estimated from Kley's model. As a final test case, we consider two layers of one-dimensional arrays of wires to investigate porpoising effects analytically. We find good agreement with analytical and Kley's results for these geometries, verifying our proposed multipole model. Note that only our multipole model accounts for the full dependence on the actual cable geometry which enables us to model more complicated cable geometries.
Citation
Salvatore Campione, Larry Kevin Warne, and William L. Langston, "Multipole-Based Cable Braid Electromagnetic Penetration Model: Magnetic Penetration Case," Progress In Electromagnetics Research C, Vol. 102, 1-11, 2020.
doi:10.2528/PIERC20031108
References

1. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," Bell System Technical Journal, Vol. 13, 532-579, 1934.
doi:10.1002/j.1538-7305.1934.tb00679.x

2. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

3. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., Washington, 1986.

4. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley and Sons, 2008.
doi:10.1002/9780470268483

5. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., New York, 1997.

6. Tyni, M., "The transfer impedance of coaxial cables with braided outer conductor," FV. Nauk, Inst. Telekomum Akust. Politech Wroclaw, Ser. Konfi, 410-419, 1975.

7. Zhou, G. and L. Gong, "An improved analytical model for braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 161-161, 1990.
doi:10.1109/15.52412

8. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "First principles cable braid electromagnetic penetration model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.
doi:10.2528/PIERB15121806

9. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "Cable braid electromagnetic penetration model,” Sandia National Laboratories Report,", Vol. SAND2015-5019, Albuquerque, NM, 2015.

10. Johnson, W. A., L. K. Warne, L. I. Basilio, R. S. Coats, J. D. Kotulski, and R. E. Jorgenson, "Modeling of braided shields," Proceedings of Joint 9th International Conference on Electromagnetics in Advanced Applications ICEAA 2005 and 11th European Electromagnetic Structures Conference EESE, 881-884, Torino, Italy, 2005.

11. Campione, S., L. I. Basilio, L. K. Warne, H. G. Hudson, and W. L. Langston, "Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis," Progress In Electromagnetics Research C, Vol. 65, 93-102, 2016.
doi:10.2528/PIERC16032403

12. Campione, S., L. K. Warne, W. L. Langston, W. A. Johnson, R. S. Coats, and L. I. Basilio, "Multipole-based cable braid electromagnetic penetration model: Electric penetration case," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 2, 444-452, 2017.
doi:10.1109/TEMC.2017.2721101

13. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, 1-9, 1993.
doi:10.1109/15.249390

14. Warne, L. K., K. O. Merewether, and W. A. Johnson, "Approximations to wire grid inductance," Sandia National Laboratories Report, Vol. SAND2007-8116, Albuquerque, NM, 2008.