Vol. 105
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-29
Wideband Metasurface Polarization Converter with Double-Square-Shaped Patch Elements
By
Progress In Electromagnetics Research C, Vol. 105, 47-58, 2020
Abstract
In this paper, a wideband metasurface reflector that converts polarization of plane wave to the cross polarization with a double-square-shaped unit cell is presented, and the principle of polarization conversion based on polarization synthesis is also presented. The proposed structure has a unit cell with the longest dimension of 0.37 wavelength, a width of 0.23 wavelength, and a thickness of about 0.09 wavelength. 95% or more of the incident wave power is converted to cross-polarization covering a fractional bandwidth of 32.4% at 8.5 GHz.
Citation
Takashi Noishiki, Ryuji Kuse, and Takeshi Fukusako, "Wideband Metasurface Polarization Converter with Double-Square-Shaped Patch Elements," Progress In Electromagnetics Research C, Vol. 105, 47-58, 2020.
doi:10.2528/PIERC20031006
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Carrubba, E., S. Genovesi, A. Monorchio, and G. Manara, "AMC-based low profile antennas for 4G communication services," 2007 IEEE Antennas and Propagation Society International Symposium, 3364-3367, Honolulu, USA, Jun. 2007.

3. Qu, D., L. Shafai, and A. Foroozesh, "Improving microstrip patch antenna performance using EBG substrates," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 6, 558-563, Dec. 2006.
doi:10.1049/ip-map:20060015

4. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-19, Jan. 2011.
doi:10.1109/TAP.2010.2090458

5. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, Jun. 2011.
doi:10.1109/TAP.2011.2143656

6. Maruyama, S. and T. Fukusako, "An interpretative study on circularly polarized patch antenna using artificial ground structure," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5919-5924, Nov. 2014.
doi:10.1109/TAP.2014.2357431

7. Yang, F. and Y. Rahmat-Samii, "A low profile single dipole antenna radiating circularly polarized waves," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3083-3086, Sep. 2005.
doi:10.1109/TAP.2005.854536

8. Ta, S. X. and I. Park, "Artificial magnetic conductor-based circularly polarized crossed-dipole antennas: 1. AMC structure with grounding pins," Radio Science, 630-641, May 2017.
doi:10.1002/2016RS006203

9. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, Aug. 2015.
doi:10.1109/TAP.2015.2434392

10. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Transactions on Antennas and Propagation, Vol. 17, No. 8, 1459-1463, Aug. 2018.

11. Xu, H. X., S. W. Tang, G. M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3676-3682, 2016.
doi:10.1109/TAP.2016.2565742

12. Zhao, J. C. and Y. Z. Cheng, "A high-efficiency and broadband reflective 90 linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, 255, 2016.
doi:10.1007/s00340-016-6533-6

13. Zhao, J. C. and Y. Z. Cheng, "Ultrathin dual-band polarization angle independent 90 polarization rotator with giant optical activity based on planar chiral metamaterial," Applied Physics B, Vol. 124, 185, 2018.
doi:10.1007/s00340-018-7050-6

14. Cheng, Y. Z., W. Li, and X. Mao, "Triple-band polarization angle independent 90 polarization rotator based on fermat's spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603

15. Xu, H. X., G. W. Hu, L. Han, M. H. Jiang, Y. J. Huang, Y. Li, X.M. Yang, X. H Ling, L. Z. Chen, J. L. Zhao, and C. W. Qiu, "Chirality-assisted high]efficiency metasurfaces with independent control of phase, amplitude, and polarization," Advanced Optical Materials, Vol. 7, No. 4, 1801479, Feb. 2019.

16. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2457-2459, Jul. 2010.
doi:10.1109/TAP.2010.2048874

17. Hwang, K. C., "A novel meander-grooved polarization twist reflector," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 4, 217-219, Apr. 2010.
doi:10.1109/LMWC.2010.2042557

18. Zhu, X. C., et al., "A novel reflective surface with polarization rotation haracteristic," IEEE Antennas Wireless Propag. Lett., Vol. 12, 968-971, Aug. 2013.
doi:10.1109/LAWP.2013.2276004

19. Chen, H., et al., "Ultra-wideband polarization conversion metasurfaces," Proc. IEEE 3rd Asia Pac. Conf. Antennas Propag. (APCAP), 1009-1011, Jul. 2014.

20. Zhang, L., P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, "Ultra-thin effective metamaterial polarization rotator based on multiple plasmon resonances," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1157-1160, May 2015.
doi:10.1109/LAWP.2015.2393376

21. Li, L., Y. J. Li, Z. Wu, F. F. Huo, Y. L. Zhang, and C. S. Zhao, "Novel polarization reconfigurable converter based on multilayer frequency-selective surfaces," Proc. IEEE, Vol. 103, No. 7, 1057-1070, Jul. 2015.
doi:10.1109/JPROC.2015.2437611

22. Li, L., Y. Li, Z. Wu, F. Huo, Y. Zhang, and C. Zhao, "Novel polarization reconfigurable converter based on multilayer frequency-selective surfaces," Proc. IEEE, Vol. 103, No. 7, 1057-1070, Jul. 2015.
doi:10.1109/JPROC.2015.2437611

23. Nakano, H., K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauchi, "Low-profile equiangular spiral antenna backed by an EBG reflector," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1309-1318, May 2009.
doi:10.1109/TAP.2009.2016697