1. Qu, D., L. Shafai, et al. "Improving microstrip patch antenna performance using EBG substrates," IEE Proceedings --- Microwaves, Antennas Propag., Vol. 153, No. 6, 558-563, Dec. 2006.
doi:10.1049/ip-map:20060015
2. Ntawangaheza, J. D., L. Sun, et al. "Thin profile wideband and high gain microstrip patch antenna on a modified AMC," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2518-2522, Dec. 2019.
doi:10.1109/LAWP.2019.2942056
3. Luk, K. M., C. L. Mak, et al. "Broadband microstirp patch antenna," Electron. Let., Vol. 34, 1442-1443, 1998.
doi:10.1049/el:19981009
4. Aanandan, C. K., P. Mohanan, et al. "Broad-band gap coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 10, 1581-1586, Oct. 1990.
doi:10.1109/8.59771
5. Lee, R. Q. and K. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971
6. Targonski, S. D., R. B. Waterhouse, et al. "Design of wide-band aperture stacked microstrip patch antennas ," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1245-1251, 1998.
doi:10.1109/8.719966
7. Clenet, M. and L. Shafai, "Multiple resonances and polarisation of U-slot patch antenna," Electron. Lett., Vol. 35, No. 2, 101-103, Jan. 21, 1999.
doi:10.1049/el:19990087
8. Khan, Q. U., D. Fazal, et al. "Use of slots to improve performance of patch in terms of gain and sidelobes reduction," IEEE Antennas Wireless Propag. Lett., Vol. 14, 422-425, 2015.
doi:10.1109/LAWP.2014.2365588
9. He, Y., Y. Li, et al. "Dual linearly polarized microstrip antenna using a slot-loaded TM50 mode," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2344-2348, Dec. 2018.
doi:10.1109/LAWP.2018.2874472
10. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3310-3318, Aug. 2016.
doi:10.1109/TAP.2016.2573860
11. Umar Khan, Q., M. Bin Ihsan, et al. "Higher order modes: A solution for high gain, wide band patch antennas for different vehicular applications ," IEEE Trans. Vehicular Technology, Vol. 66, No. 5, 3548-3554, May 2017.
12. Foroozesh, A. and L. Shafai, "Improvements in the performance of compact microstrip antennas using AMC ground planes," 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, 1-4, Ottawa, ON, 2010.
13. Majumder, B., K. Krishnamoorthy, et al. "Compact broadband directive slot antenna loaded with cavities and single and double layers of metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4595-4606, Nov. 2016.
doi:10.1109/TAP.2016.2601346
14. Malekpoor, H. and S. Jam, "Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4626-4638, Nov. 2016.
doi:10.1109/TAP.2016.2607761
15. Chen, D., W. Yang, and W. Che, "High-gain patch antenna based on cylindrically projected EBG planes," IEEE Antennas Wireless Propag. Letts., Vol. 17, No. 12, 2374-2378, Dec. 2018.
doi:10.1109/LAWP.2018.2875778
16. Zhu, S. Li, et al. "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas Wireless Propag. Letts., Vol. 17, No. 3, 458-462, Mar. 2018.
doi:10.1109/LAWP.2018.2795018
17. Yang, W., H. Wang, et al. "A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures," IEEE Antennas Wireless Propag. Lett., Vol. 12, 769-772, 2013.
doi:10.1109/LAWP.2013.2270943
18. Yang, W., D. Chen, et al. "High-efficiency high-isolation dual-orthogonally polarized patch antennas using nonperiodic RAMC structure," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 887-892, Feb. 2017.
doi:10.1109/TAP.2016.2632700
19. Foroozesh, A. and L. Shafai, "Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement," Canadian Journal of Electrical and Computer Engineering, Vol. 33, No. 2, 87-98, Spring 2008.
doi:10.1109/CJECE.2008.4621833
20. Jagtap, S., A. Chaudhari, N. Chaskar, et al. "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas Wireless Propag. Letters, Vol. 17, No. 3, 509-512, Mar. 2018.
doi:10.1109/LAWP.2018.2799873
21. Yang, W., W. Che, and H. Wang, "High-gain design of a patch antenna using stub-loaded artificial magnetic conductor," IEEE Antennas Wireless Propag. Letters, Vol. 12, 1172-1175, 2013.
doi:10.1109/LAWP.2013.2280576
22. Liu, W., Z. N. Chen, et al. "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jul. 2015.
doi:10.1109/TAP.2015.2429741
23. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1165-1172, Mar. 2014.
doi:10.1109/TAP.2013.2293788
24. Gao, G., C. Yang, B. Hu, R. Zhang, and S.Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 2, 288-292, Feb. 2019.
doi:10.1109/LAWP.2018.2889117
25. Mateos, R. M., C. Craeye, and G. Toso, "High-gain wideband low-profile anenna," Microw. Opt. Techol. Lett., Vol. 48, No. 12, 2615-2619, 2006.
doi:10.1002/mop.21987
26. Zhong, Y., G. Yang, et al. "Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground," Electron. Lett., Vol. 51, No. 4, 315-317, 2015.
doi:10.1049/el.2014.4017
27. Nie, N., X. Yang, Z. N. Chen, and B. Wang, "A low-profile wideband hybrid metasurface antenna array for 5G andWiFi systems," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 665-671, Feb. 2020.
doi:10.1109/TAP.2019.2940367
28. Alharbi, M., C. A. Balanis, et al. "Hybrid circular ground planes for high-realized-gain low-profile loop antennas," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1426-1429, Aug. 2018.
doi:10.1109/LAWP.2018.2848840
29. Sun, W., Y. Li, Z. Zhang, and P. Chen, "Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-CPW transition," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 632-637, Jan. 2019.
doi:10.1109/TAP.2018.2874801
30. Li, T. and Z. N. Chen, "A dual-band metasurface antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5620-5624, Oct. 2018.
doi:10.1109/TAP.2018.2860121
31. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yin, "Miniaturized patch antenna with grounded strips," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 843-848, Feb. 2015.
doi:10.1109/TAP.2014.2382668
32., https://en.wikipedia.org/wiki/Metamaterial antenna (accessed 29 Nov. 2019).
doi:10.1109/TAP.2014.2382668
33. Canet-Ferrer, J., "Metamaterials and metasurfaces," Intechopen, 2019.
34. Alibakhshikenari, M., Virdee, et al. "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, Feb. 2018.
doi:10.1002/2017RS006515
35. Alibakhshikenari, M., B. S. Virdee, et al. "Miniaturized planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1080-1086, Jun. 2018.
doi:10.1049/iet-map.2016.1141
36. Alibakhshikenari, M., et al. "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimeter-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1129-1133, Jul. 2019.
doi:10.1049/iet-map.2018.5101
37. Alibakhshikenari, M., B. S. Virdee, C. H. See, et al. "High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub terahertz integrated circuits," Sci. Rep., Vol. 10, 4298, Mar. 2020.
doi:10.1038/s41598-020-61099-8
38. Alharbi, M. S., C. A. Balanis, et al. "Performance enhancement of square-ring antennas exploiting surface-wave metasurfaces," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 1991-1995, Oct. 2019.
doi:10.1109/LAWP.2019.2936020
39. Alibakhshikenari, M., et al. "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, Feb. 2020.
doi:10.1049/iet-map.2019.0362
40. Alibakhshikenari, M., M. Khalily, B. S. Virdee, et al. "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, Mar. 5, 2019.
41. Alibakhshikenari, M., B. S. Virdee, et al. "Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz," Optik, International Journal for Light and Electron Optics, Dec. 2019.
42. Alibakhshikenari, M., B. S. Virdee, et al. "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908
43. Wang, Z., et al. "An accurate edge extension formula for calculating resonant frequency of electrically thin and thick rectangular patch antennas," IEEE Access, Vol. 4, 2388-2397, Jun. 2016.
doi:10.1109/ACCESS.2016.2565684
44. Sievenpiper, D., L. Zhang, et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Micr. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001