Vol. 102
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-20
Design, Analysis, and Optimization of Dual Side Printed Multiband Antenna for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020
Abstract
In this paper, the performance of a compact, multiband, and dual side printed microstrip patch antenna is introduced. The proposed antenna configuration is designed using a nested triangular patch and defected ground structure (DGS). A simple rectangular DGS is constituted in the ground plane, which helps to enhance the multiband characteristics of the antenna with its size. The proposed design exhibits compact size, better radiation, and reflection characteristics over a multiband frequency ranging from 1 GHz to 6 GHz. These entire bands are allied with various wireless communication services, such as GSM 1400 MHz and 1900 MHz, ISM, WLAN, Bluetooth, LTE, Wi-Fi, and GPS applications. The receiving Triangular Nested Patch (TNP) antenna offers omnidirectional radiation with 4.45 dBi gain and maximum return loss -34.31 dB at 3.75 GHz. Moreover, extraction of parameters has been presented in this paper with the variation of feed width and ground length. The proposed design shows the enhancement of gain and improved return loss. A comparative analysis has also been shown with the four different antennas parameters. Furthermore, this paper also presents the compact structure to cover efficient frequency ranging from 1400 MHz to 5.8 GHz for radiofrequency energy harvesting applications.
Citation
Rashmi Pandey, Ashok Kumar Shankhwar, and Ashutosh Singh, "Design, Analysis, and Optimization of Dual Side Printed Multiband Antenna for RF Energy Harvesting Applications," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901
References

1. Ku, M., W. Li, Y. Chen, and K. J. Ray Liu, "Advances in energy harvesting communications: Past, present, and future challenges," IEEE Communications Surveys & Tutorials, Vol. 18, No. 2, 1384-1412.
doi:10.1109/COMST.2015.2497324

2. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, June 2014, doi: https://doi.org/10.1109/MMM.2014.2309499.
doi:10.1109/MMM.2014.2309499

3. Shafique, K., et al. "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2834392.
doi:10.1109/ACCESS.2018.2834392

4. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2848907.
doi:10.1109/ACCESS.2018.2848907

5. Chuma, E. L., L. de la Torre Rodr´ıguez, Y. Iano, L. L. B. Roger, and M. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 173-178, 2018, doi: https://doi.org/10.1049/iet-map.2016.1150.
doi:10.1049/iet-map.2016.1150

6. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 956-959, June 2018, doi: https://doi.org/10.1109/LAWP.2018.2825783.
doi:10.1109/LAWP.2018.2825783

7. Shao, X., B. Li, N. Shahshahan, N. Goldsman, T. S. Salter, and G. M. Metze, "A planar dual-band antenna design for RF energy harvesting applications," 2011 International Semiconductor Device Research Symposium (ISDRS), 1-2, College Park, MD, 2011, doi: https://doi.org/10.1109/ISDRS.2011.6135318.

8. Chandravanshi, S., S. S. Sarma, and M. J. Akhtar, "Design of triple band differential rectenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2716-2726, June 2018, doi: https://doi.org/10.1109/TAP.2018.2819699.
doi:10.1109/TAP.2018.2819699

9. Tavares, J., et al. "Spectrum opportunities for electromagnetic energy harvesting from 350 MHz to 3 GHz," 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT), 126-130, Tokyo, 2013, doi: https://doi.org/10.1109/ISMICT.2013.6521714.

10. Nimo, A., D. Grgic, and L. M. Reindl, "Ambient Electromagnetic wireless energy harvesting using multiband planar antenna," International Multi-Conference on Systems, Signals & Devices, 1-6, Chemnitz, 2012, doi: https://doi.org/10.1109/SSD.2012.6198036.

11. Mansour, M., X. Le Polozec, and H. Kanaya, "Enhanced broadband RF differential rectifier integrated with archimedean spiral antenna for wireless energy harvesting applications," Sensors, Vol. 19, No. 3, 655, 2019, doi: https://doi.org/10.3390/s19030655.
doi:10.3390/s19030655

12. Kurvey, M. and A. Kunte, "Tri-stepped rectangular antenna for efficient RF energy harvesting," J. Commun. Inf. Netw., Vol. 3, 86-90, 2018, doi: https://doi.org/10.1007/s41650-018-0018-1.
doi:10.1007/s41650-018-0018-1

13. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "Broadband rectenna for radio frequency energy harvesting application," IETE J. of Research, Vol. 64, No. 3, 347-353, 2017.
doi:10.1080/03772063.2017.1356755

14. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband RF energy harvesting system covering CDMA GSM900 GSM1800 3G bands with inherent impedance matching," Proc. IEEE MTT-S International Microwave Symposium (IMS), 1-3, San Francisco, CA, USA, 2016.

15. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 36-39, 2015.

16. Booket, M. R., A. Jafargholi, M. Kamyab, H. Eskandari, M. Veysi, and S. M. Mousavi, "A compact multi-band printed dipole antenna loaded with single-cell MTM," IET Microwaves, Antennas & Propagation, Vol. 6, No. 1, 17-23, 2012.
doi:10.1049/iet-map.2010.0545

17. Ali, M. M. M., A. M. Azmy, and O. M. Haraz, "Design and implementation of reconfigurable quad-band microstrip antenna for MIMO wireless communication applications," Proc. IEEE 31th National Radio Science Conference (NRSC), 27-34, Cairo, Egypt, 2014.

18. Ansal, K. A. and T. Shanmuganataham, "Compact Novel ACS fed antenna with defected ground for triple frequency operation," Proc. IEEE Annual International Conference on Emerging Research Areas and International Conference on Microelectronics, Communic, 1-4, Kanjirapally, India, 2013.

19. Ma, C., Z. Kuai, X.-W. Zhu, and W.-J. Zhu, "A broadside-coupled feeding planar multiband antenna," Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 520-521, Orlando, FL, USA, 2013.

20. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Crawfordsville, USA, 1998.

21. Dwivedi, S., V. Mishra, and Y. P. Kosta, "Metamaterial-inspired patch antenna miniaturization technique for Satellite: Emerging Technology Trends in Electronics," Proc. IEEE 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking (ET2ECN), 1-6, Gujarat, India, 2012.

22. Taghadosi, M., L. Albasha, N. Qaddoumi, and M. Ali, "Miniaturized printed elliptical nested fractal multiband antenna for energy harvesting applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1045-1053, 2015.
doi:10.1049/iet-map.2014.0744