Vol. 102
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-25
Low Reflection Coefficient Ku-Band Antenna Array for FMCW Radar Application
By
Progress In Electromagnetics Research C, Vol. 102, 127-137, 2020
Abstract
A radar for decisive target detection and tracking requires wideband, high return loss and high efficiency antenna array. In this paper, a 16 element staked-patch microstrip antenna array is presented at Ku-band with very low reflection coefficient for radar system. An aperture coupled feeding approach for a stack patch antenna is employed for wide bandwidth. A thin and low-loss tangent material, Taconic TLY-5, is used in the design of an antenna array to minimize the surface current loss and dielectric loss. Moreover, the antenna is designed with good impedance match, -30 dB, for high efficiency, by optimizing the stacked patches and utilizing reactive loading from u-slit on patch. For a low reflection coefficient antenna array over a wide bandwidth, an adequate feeding network consists of a compact and meandering stripline with metal-post around it is developed. The stripline configuration with metal-post minimizes crosstalk and lateral leakage. The feeding network developed has low reflection coefficient of -30 dB for the target band. The simulated feeding network loss is also low, 0.5 dB. The overall size of the 16 element array is compact, 295 mm x 30 mm (14λ x 1.425λ). The antenna array performance gives a reflection coefficient of -30 dB in the range of 14-14.5 GHz and total efficiency of 80%. The gain of the array is 21.54 dBi at 14.25 GHz.
Citation
Laxmikant Minz, Hyunseong Kang, and Seong-Ook Park, "Low Reflection Coefficient Ku-Band Antenna Array for FMCW Radar Application," Progress In Electromagnetics Research C, Vol. 102, 127-137, 2020.
doi:10.2528/PIERC20020302
References

1. Guven, I., O. Ozdemir, Y. Yapici, H. Mehrpouyan, and D. Matolak, "Detection, localization, and tracking of unauthorized uas and jammers," 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 1-10, Sep. 2017.

2. Ochodnicky, J., Z. Matousek, M. Babjak, and J. Kurty, "Drone detection by ku-band battlefield radar," 2017 International Conference on Military Technologies (ICMT), 613-616, May 2017.
doi:10.1109/MILTECHS.2017.7988830

3. Suh, J., L. Minz, D. Jung, H. Kang, J. Ham, and S. Park, "Drone-based external calibration of a fully synchronized ku-band heterodyne FMCW radar," IEEE Transactions on Instrumentation and Measurement, Vol. 66, 2189-2197, Aug. 2017.
doi:10.1109/TIM.2017.2687518

4. Park, J., S. Park, D.-H. Kim, and S.-O. Park, "Leakage mitigation in heterodyne FMCW radar for small drone detection with stationary point concentration technique," IEEE Transactions on Microwave Theory and Techniques, accepted.

5. Immoreev, I. I. and P. G. S. D. V. Fedotov, "Ultra wideband radar systems: Advantages and disadvantages," 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 201-205, May 2002.
doi:10.1109/UWBST.2002.1006348

6. Kaschel, H. and C. Ahumada, "Design of rectangular microstrip patch antenna for 2.4 GHz applied a WBAN," 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), 1-6, Oct. 2018.

7. Mon, D. F., E. S. Sakomura, and D. C. Nascimento, "Microstrip-to-probe fed microstrip antenna transition," 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1521-1522, Jul. 2018.

8. Xu, Y., S. Gong, and T. Hong, "Circularly polarized slot microstrip antenna for harmonic suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 472-475, 2013.
doi:10.1109/LAWP.2013.2256334

9. Tan, M. C., M. Li, Q. H. Abbasi, and M. Imran, "A wideband beam forming antenna array for 802.11ac and 4.9 GHz," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Mar. 2019.

10. Atamanesh, M., B. Abbasi Arand, and A. Zahedi, "Wideband microstrip antenna array with simultaneously low sidelobe level in both sum and difference patterns," IET Microwaves, Antennas Propagation, Vol. 12, No. 5, 820-825, 2018.
doi:10.1049/iet-map.2017.0494

11. Khan, T. A., M. I. Khattak, A. B. Qazi, N. Saleem, and X. Chen, "Stacked microstrip array antenna with fractal patches for satellite applications," 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), 875-880, Jun. 2018.
doi:10.1109/ICIS.2018.8466409

12. Beasley, P. D. L., A. G. Stove, B. J. Reits, and B. As, "Solving the problems of a single antenna frequency modulated CW radar," IEEE International Conference on Radar, 391-395, May 1990.
doi:10.1109/RADAR.1990.201197

13. Baktir, C., E. Sobaci, and A. Dnmez, "A guide to reduce the phase noise effect in FMCW radars," 2012 IEEE Radar Conference, 0236-0239, May 2012.
doi:10.1109/RADAR.2012.6212143

14. Ray, K. P. and G. Kumar, Broadband Microstrip Antennas, Artech House, 2003.

15. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

16. Bhalla, R. and L. Shafai, "Resonance behavior of single u-slot and dual u-slot antenna," IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Vol. 2, 700-703, Jul. 2001.

17. Pozar, D. M. and S. D. Targonski, "Improved coupling for aperture coupled microstrip antennas," Electronics Letters, Vol. 27, 1129-1131, Jun. 1991.
doi:10.1049/el:19910705

18. Rathi, V., G. Kumar, and K. P. Ray, "Improved coupling for aperture coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 1196-1198, Aug. 1996.
doi:10.1109/8.511831

19. Komanduri, V. R., D. R. Jackson, J. T. Williams, and A. R. Mehrotra, "A general method for designing reduced surface wave microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, 2887-2894, Jun. 2013.
doi:10.1109/TAP.2013.2254441

20. Matin, M. A., B. S. Sharif, and C. C. Tsimenidis, "Dual layer stacked rectangular microstrip patch antenna for ultra wideband applications," IET Microwaves, Antennas Propagation, Vol. 1, 1192-1196, Dec. 2007.
doi:10.1049/iet-map:20070051

21. Ansari, J. A. and R. B. Ram, "Broadband stacked u-slot microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 4, 1724, 2008.

22. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

23. Gatti, F., M. Bozzi, L. Perregrini, K. Wu, and R. G. Bosisio, "A novel substrate integrated coaxial line (SICL) for wide-band applications," 2006 European Microwave Conference, 1614-1617, Sept. 2006.
doi:10.1109/EUMC.2006.281409

24. Ponchak, G. E., D. Chen, and J.-G. Yook, "Characterization of plated via hole fences for isolation between stripline circuits in LTCC packages," 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192), Vol. 3, 1831-1834, Jun. 1998.
doi:10.1109/MWSYM.1998.700838

25. Noh, H. S., J. S. Yun, J. M. Kim, and S.-I. Jeon, "Microstrip patch array antenna with high gain and wideband for Tx/Rx dual operation at ku-band," IEEE Antennas and Propagation Society Symposium, Vol. 3, 2480-2483, Jun. 2004.

26. Bilgic, M. M. and K. Yegin, "Wideband offset slot-coupled patch antenna array for X/Ku-band multimode radars," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 157-160, 2014.
doi:10.1109/LAWP.2013.2296911

27. Lai, H. W., D. Xue, H. Wong, K. K. So, and X. Y. Zhang, "Broadband circularly polarized patch antenna arrays with multiple-layers structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 525-528, 2017.
doi:10.1109/LAWP.2016.2587302

28. Boskovic, N., B. Jokanovic, M. Radovanovic, and N. S. Doncov, "Novel ku-band series-fed patch antenna array with enhanced impedance and radiation bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 66, 7041-7048, Dec. 2018.
doi:10.1109/TAP.2018.2874515

29. Zhang, Y., Z. Song, W. Hong, and R. Mittra, "Wideband high-gain 45 dual-polarised stacked patch antenna array for ku-band back-haul services," IET Microwaves, Antennas Propagation, Vol. 14, No. 1, 53-59, 2020.
doi:10.1049/iet-map.2019.0272