1. Nadeem, Q. U. A., et al., "Design of 5G full dimension massive MIMO systems," IEEE Trans. Commun., Vol. 66, 726-740, 2018.
doi:10.1109/TCOMM.2017.2762685
2. Yang, H. H. and Y. Q. S. Quel, "Massive MIMO meet small cell," Springer Briefs in Electrical and Computer Engineering, 2017, DOI 10.1007/978-3-319-43715-6_2.
3. Osseiran, A., et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., Vol. 52, 26-35, 2014.
doi:10.1109/MCOM.2014.6815890
4. Parchin, N. O., et al., Microwave/RF Components for 5G Front-end Systems, 1-200, Avid Science, 2019.
5. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, 846, London, UK, 2018.
6. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quad-band planar inverted-F antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403
7. Oliveri, G., et al., "Codesign of unconventional array architectures and antenna elements for 5G base stations," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6752-6767, Dec. 2017.
doi:10.1109/TAP.2017.2738065
8. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications,".
doi:10.1109/TAP.2017.2738065
8. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications," Progress In Electromagnetics Research M, Vol. 67, 197-207, 2018.
doi:10.2528/PIERM17091802
9. Comisso, M., et al., "3D multi-beam and null synthesis by phase-only control for 5G antenna arrays," Electronics, Vol. 8, 656, 2019.
doi:10.3390/electronics8060656
10. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna array for 5G smartphones," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1769-1774, Xiamen, China, Dec. 17–20, 2019.
11. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A substrate-insensitive antenna array with broad bandwidth and high efficiency for 5G mobile terminals," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1764-1768, Xiamen, China, Dec. 17–20, 2019.
12. Jaber, M., M. A. Imran, R. Tafazolli, and A. Tukmanov, "5G backhaul challenges and emerging research directions: A survey," IEEE Access, Vol. 4, 1743-1766, Apr. 2016.
doi:10.1109/ACCESS.2016.2556011
13. Chen, Q., et al., "Single ring slot based antennas for metal-rimmed 4G/5G smartphones," IEEE Trans. Antennas Propag., Vol. 67, 1476-1487, 2018.
14. Ojaroudiparchin, N., et al., "Wide-scan phased array antenna fed by coax-to-microstriplines for 5G cell phones," 21st International Conference on Microwaves, Radar and Wireless Communications, Krakow, Poland, 2016.
15. Liu, Y., et al., "MIMO antenna array for 5G smartphone applications," 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 2019.
16. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikan, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band," Microwave Opt. Technol. Lett., Vol. 56, 1323-1327, 2014.
doi:10.1002/mop.28316
17. Ojaroudi Parchin, N., et al., "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, Mar. 31–Apr. 5, 2019.
18. Wong, K. L., et al., "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 58, 174-181, 2016.
doi:10.1002/mop.29527
19. Chang, L. Y., et al., "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Trans. Antennas Propag., Vol. 67, 5212-5220, 2019.
doi:10.1109/TAP.2019.2913738
20. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-217, 2017.
doi:10.2528/PIERC17082308
21. Zhao, X., S. P. Yeo, and L. C. Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Trans. Antennas Propag., Vol. 66, 4485-4495, 2018.
doi:10.1109/TAP.2018.2851381
22. Parchin, N. O., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 9, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112
23. Xu, S., M. Zhang, H. Wen, and J. Wang, "Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium," Scientific Reports, Vol. 7, 12162, 2017.
doi:10.1038/s41598-017-11281-2
24. Sun, L., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, 6364-6369, 2018.
doi:10.1109/TAP.2018.2864674
25. Li, M.-Y., et al., "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
doi:10.1109/ACCESS.2017.2781705
26. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 152-156, 2019.
doi:10.1109/LAWP.2018.2883428
27. Abdullah, M., et al., "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 1090, 1-16, 2019.
28. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-Element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
doi:10.1109/ACCESS.2019.2904647
29. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, 685-690, 2012.
30. Parchin, N. O., et al., "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," IEEE Proceeding of Antennas and Propagation Conference, Birmingham, UK, Nov. 2019.
31. Parchin, N. O., et al., "MM-wave phased array Quasi-Yagi antenna for the upcoming 5G cellular communications," Applied Sciences, Vol. 9, 1-14, 2019.
32. Abdulkhaleq, A. M., N. O. Parchin, et al. "Mutual coupling effect on three-way doherty amplifier for green compact mobile communications," EuCAP 2020, Copenhagen, Denmark, 2020.
33. Ojaroudi, N., et al., "An omni-directional PIFA for downlink and uplink satellite applications in C-band," Microw. Opt. Technol. Lett., Vol. 56, 2684-2686, 2014.
doi:10.1002/mop.28672
34. Siahkal-Mahalle, B. H., et al., "A new design of small square monopole antenna with enhanced bandwidth by using cross-shaped slot and conductor-backed plane," Microwave Opt. Technol. Lett., Vol. 54, 2656-2659, 2012.
doi:10.1002/mop.27138
35. Statement: Improving consumer access to mobile services at 3.6 GHz to 3.8 GHz, Available online: https://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz, accessed on Oct. 21, 2018.
36. CST Microwave Studio, ver. 2017, CST, Framingham, MA, USA, 2017.
37. Kumar, A. and S. Raghavan, "Broadband SIW cavity-backed triangular-ringslotted antenna for Ku-band applications," AEU --- International Journal of Electronics and Communications, Vol. 87, 60-64, 2018.
doi:10.1016/j.aeue.2018.02.016
38. Ojaroudi, Y., et al., "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015.
doi:10.1002/mop.28946
39. Kumar, A. and S. Raghavan, "Bandwidth enhancement of substrate integrated waveguide cavity-backed bow-tie-complementary-ring-slot antenna using a shorted-via," Defence Science Journal, Vol. 68, 197-202, 2018.
doi:10.14429/dsj.68.11827
40. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted Ushaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, No. 8, 685-690, Aug. 2012.
41. Al-Nuaimi, M. K. T. and W. G. Whittow, "Performance investigation of a dual element IFA array at 3 GHz for mimo terminals," Antennas and Propagation Conference (LAPC), 1-5, Loughborough, UK, 2011.
42. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Small-size tapered slot antenna (TSA) design for use in 5G phased array applications," Applied Computational Electromagnetics Society Journal, Vol. 32, 193-202, 2018.
43. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8 GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, Mar. 10–12, 2014.
44. Mazloum, J., et al., "Compact triple-band S-shaped monopole diversity antenna for MIMO applications," Applied Computational Electromagnetics Society Journal, Vol. 30, 975-980, 2015.
45. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346
46. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, 816-822, 2012.
47. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidth and dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, 346-357, 2014.
48. Khan, R., A. A. Al-Hadi, and P. J. Soh, "Recent advancements in user effect mitigation for mobile terminal antennas: A review," IEEE Trans. Electromagn. Compat., Vol. 61, No. 1, 279-287, Feb. 2019.
doi:10.1109/TEMC.2018.2791418
49. Khan, R., et al., "User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas," IEEE Access, Vol. 6, 77695-77715, 2018.
doi:10.1109/ACCESS.2018.2883788
50. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, 218-232, 2013.
doi:10.1109/MAP.2013.6735522
51. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 23rd Telecommunications Forum Telfor (TELFOR), 587-590, Belgrade, Serbia, Nov. 24–26, 2015.
52. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019.
doi:10.3390/s19030456
53. Syrytsin, I., S. Zhang, and G. F. Pedersen, "Performance investigation of a mobile terminal phased array with user effects at 3.5 GHz for LTE advanced," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1847-1850, 2017.
doi:10.1109/LAWP.2016.2570418
54. Ojaroudiparchin, N., et al., "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607
55. Isa, C. M. N. C., A. A. Al-Hadi, S. N. Azemi, A. M. Ezanuddin, H. Lago, and M. F. Jamlos, "Effects of hand on the performance of 5GHz two port terminal antennas," Proc. IEEE Asia–Pacific Conf. Appl. Electromagn. (APACE), 207-210, Dec. 2016.