1. Vaid, S. and A. Mittal, "Wide-band dual sense circularly polarized resonant cavity antenna for X band applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018.
2. Anwar, R. S., et al., "Frequency selective surfaces: A review," Applied Science, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689
3. Kotnala, A., P. Juyal, A. Mittal, and A. De, "Investigation of cavity reflex antenna using circular patch type FSS superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504
4. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103
5. Costa, F., A. Monorchio, and G. P. Vastante, "Tunable high-impedance surface with a reduced number of varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 11-13, 2011.
doi:10.1109/LAWP.2011.2107723
6. Costa, F., et al., "On the bandwidth ofhigh-impedance frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346
7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Vol. 29, Wiley Online Library, 2000.
doi:10.1002/0471723770
8. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antennas & Radio Wave Propagat., Vol. 36, 1649-1651, 1988.
doi:10.1109/8.9722
9. Zhang, L., W. Li, G. Yang, and Q. Wu, A novel general structure of tuneable frequency selective surface without bias grid, National Natural Science Foundation of China (Grant No. 60971064), 2011.
10. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronically reconfigurable meta-material for compact directive cavity antennas," Electronics Letters, Vol. 43, No. 13, 698-700, IET, Jun. 21, 2007.
doi:10.1049/el:20071181
11. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level Fabry Perot cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223-238, 2012.
doi:10.2528/PIERC12031503
12. Wang, H., et al., "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Scientific Reports, Vol. 6, 23081, 2016.
doi:10.1038/srep23081
13. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, Jan. 2004.
doi:10.1109/LMWC.2003.820639
14. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A novel dual band Frequency Selective Surface (FSS),", 978-1-4244-2802-1/09/$25.00 c2009 IEEE.
15. Doken, B. and M. Kartal, "Tunable frequency surface design between 2.43 GHz and 6 GHz," An International Journal (ELELIJ), Vol. 6, No. 3, 1-8, Aug. 2017.
16. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702
17. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 127-135, 2015.
doi:10.1109/MAP.2015.2470678
18. Rahmani-Shams, Y., S. Mohammd-Ali-Nezhad, A. N. Yeganeh, and S. H. Sedighy, "Dual band low profile and compact tuneable frequency selective serface with wide tuning range," Journal of Applied Physics, Vol. 123, 235301, 2018.
doi:10.1063/1.5023449
19. Doken, B. and M. Kartal, "An active frequency selective surface design having four different switchable frequency characteristics," Radio Engineering, Vol. 28, No. 1, 114-120, Apr. 2019.
20. Ourir, A., et al., Directive metamaterial-based subwavelength resonant cavity antennas — Applications for beam steering, Institut d'electronique fondamentale, Universite Paris Sud, UMR 8622 — CNRS, 91405 Orsay cedex, France, Available online Jun. 26, 2009.
21. Ghosh, S. and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 166-172, 2017.
doi:10.1109/TEMC.2017.2706359
22. Huang, X. G., Z. Shen, Q. Y. Feng, and B. Li, "Tunable 3-D bandpass frequency-selective structure with wide tuning range," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3297-3301, 2015.
doi:10.1109/TAP.2015.2428737
23. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi:10.2528/PIERB08031214
24. Boccia, L., et al., "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, No. 24, 1213-1215, Nov. 19, 2009.
doi:10.1049/el.2009.2577
25. Li, Y., L. Li, Y. Zhang, and C. Zhao, "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 133-141, 2014.
doi:10.1109/TAP.2014.2367523