Vol. 99
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-23
Microstrip Defected Ground Structure for Determination of Blood Glucose Concentration
By
Progress In Electromagnetics Research C, Vol. 99, 35-48, 2020
Abstract
This work reports the application of a microwave sensor in measuring human blood glucose concentration. The main contribution of this work lies on the blood glucose profile which is collected from 69 random patients regardless of their gender, age, and haematology properties, instead of using water as the base or focusing on a single person. Hence the blood glucose profile is more realistic. Blood is extracted from the participants and dropped at the center of the dumbbells section of a microstrip defected ground structure to gather the notch frequency shifting data. On the other hand, the blood samples are measured using Omron Freestyle Glucometer to collect their associated blood glucose readings. Five predicting models have been proposed in this work. Based on the cross-validation, it is found that the blood glucose level can be correlated very well with shifted notch frequency by using a linear model. It introduces least root mean square error (RMSE) of 0.0592 and shows good correlation (R2 = 0.9356) between the reading from commercial glucometer and microwave sensor in the range up to 12 mmol/L. The reliability of this microwave sensor is proven once again when the predicted blood glucose data are all falling in Zone A of Clarke Error Grid. The outcome of this work shows the capability of this microwave sensor in measuring the blood glucose level. Since this microwave sensor can be reused under a proper cleaning procedure, it improves the sustainability of conventional blood glucose testing by reducing the disposal of testing strips and cost. It is believed that this sensor will be suitable for extensive blood glucose testing conducted in the laboratory.
Citation
Yee See Khee, Soon Chong Johnson Lim, Pih Shyan Pong, and Samsul Haimi Dahlan, "Microstrip Defected Ground Structure for Determination of Blood Glucose Concentration," Progress In Electromagnetics Research C, Vol. 99, 35-48, 2020.
doi:10.2528/PIERC19110501
References

1. Yacine, M., "Non-invasive glucose monitoring: Application and technologies," Curr. Trends Biomed. Eng. Biosci., Vol. 14, No. 1, 1-6, 2019.

2. Bruen, D., C. Delaney, L. Florea, and D. Diamond, "Glucose sensing for diabetes monitoring: Recent developments," Sensors (Switzerland), Vol. 17, No. 8, 1866, Aug. 2017.
doi:10.3390/s17081866

3. James, P. and R. McFadden, "Understanding the processes behind the regulation of blood glucose," Nursing Times, Vol. 100, No. 16, 56-58, 2004.

4. Atkinson, M. A., G. S. Eisenbarth, and A. W. Michels, "Type 1 diabetes," Lancet, Vol. 383, No. 9911, 69-82, Jan. 2014.
doi:10.1016/S0140-6736(13)60591-7

5. Skyler, J. S., et al. "Differentiation of diabetes by pathophysiology, natural history, and prognosis," Diabetes, Vol. 66, No. 2, 241-255, 2017.
doi:10.2337/db16-0806

6. Parish, R. and K. F. Petersen, "Mitochondrial dysfunction and type 2 diabetes," Curr. Diab. Rep., Vol. 5, No. 3, 177-183, Jun. 2005.
doi:10.1007/s11892-005-0006-3

7. Baz, B., J. P. Riveline, and J. F. Gautier, "Gestational diabetes mellitus: Definition, aetiological and clinical aspects," Eur. J. Endocrinol., Vol. 174, No. 2, R43-R51, 2016.
doi:10.1530/EJE-15-0378

8. Catalano, P. M., "Trying to understand gestational diabetes," Diabet. Med., Vol. 31, No. 3, 273-281, Mar. 2014.
doi:10.1111/dme.12381

9. Nery, E. W., M. Kundys, P. S. Jeleń, and M. Jönsson-Niedziólka, "Electrochemical glucose sensing: Is there still room for improvement?," Anal. Chem., Vol. 88, No. 23, 11271-11282, Dec. 2016.
doi:10.1021/acs.analchem.6b03151

10. Schwerthoeffer, U., R. Weigel, and D. Kissinger, "A highly sensitive glucose biosensor based on a microstrip ring resonator," 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, IMWS-BIO 2013 --- Proceedings, 2013.

11. Chretiennot, T., D. Dubuc, and K. Grenier, "Microwave-based microfluidic sensor for non-destructive and quantitative glucose monitoring in aqueous solution," Sensors (Switzerland), Vol. 16, No. 10, 1733, 2016.
doi:10.3390/s16101733

12. Mondal, D., N. K. Tiwari, and M. J. Akhtar, "Microwave assisted non-invasive microfluidic biosensor for monitoring glucose concentration," Proceedings of IEEE Sensors, Vol. 2018, Oct. 2018.

13. Ebrahimi, A., W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, "Microwave microfluidic sensor for determination of glucose concentration in water," Mediterranean Microwave Symposium, Vol. 2015, Jan. 2015.

14. Camli, B., E. Kusakci, B. Lafci, S. Salman, H. Torun, and A. Yalcinkaya, "A microwave ring resonator based glucose sensor," Procedia Engineering, Vol. 168, 465-468, 2016.
doi:10.1016/j.proeng.2016.11.127

15. Harnsoongnoen, S. and A. Wanthong, "Coplanar waveguide transmission line loaded with electric-LC resonator for determination of glucose concentration sensing," IEEE Sens. J., Vol. 17, No. 6, 1635-1640, 2017.
doi:10.1109/JSEN.2017.2652121

16. Abedeen, Z. and P. Agarwal, "Microwave sensing technique based label-free and real-time planar glucose analyzer fabricated on FR4," Sensors Actuators A: Phys., Vol. 279, 132-139, 2018.
doi:10.1016/j.sna.2018.06.011

17. Lin, T., "Non-invasive glucose monitoring: A review of challenges and recent advances," Curr. Trends Biomed. Eng. Biosci., Vol. 6, No. 5, 2017.
doi:10.19080/CTBEB.2017.06.555696

18. Choi, H., et al. "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, 3016-3025, 2015.
doi:10.1109/TMTT.2015.2472019

19. Jean, B. R., E. C. Green, and M. J. McClung, "A microwave frequency sensor for non-invasive blood-glucose measurement," 2008 IEEE Sensors Applications Symposium, SAS-2008 --- Proceedings, 4-7, 2008.
doi:10.1109/SAS.2008.4472932

20. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," IEEE MTT-S International Microwave Symposium Digest, 876-879, 2017.

21. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Penetration depth and sensitivity analysis," IMBioc 2018 --- 2018 IEEE/MTT-S International Microwave Biomedical Conference, 52-54, 2018.

22. Choi, H., J. Nylon, S. Luzio, J. Beutler, and A. Porc, "Design of continuous non-invasive blood glucose monitoring sensor based on a microwave split ring resonator," Conference Proceedings --- 2014 IEEE MTT-S International Microwave Workshop Series on: RF and Wireless Technologies for Biomedic, 2015.

23. Shao, J., F. Yang, F. Xia, Q. Zhang, and Y. Chen, "A novel miniature spiral sensor for non-invasive blood glucose monitoring," 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 2016.

24. Baghbani, R., M. A. Rad, and A. Pourziad, "Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear," IET Wirel. Sens. Syst., Vol. 5, No. 2, 51-57, Apr. 2015.
doi:10.1049/iet-wss.2013.0099

25. Turgul, V. and I. Kale, "Influence of fingerprints and finger positioning on accuracy of RF blood glucose measurement from fingertips," Electron. Lett., Vol. 53, No. 4, 218-220, Feb. 2017.
doi:10.1049/el.2016.4327

26. Turgul, V. and I. Kale, "A novel pressure sensing circuit for non-invasive RF/microwave blood glucose sensors," Mediterranean Microwave Symposium, 2017.

27. Nakamura, M., T. Tajima, M. Seyama, and K.Waki, "A noninvasive blood glucose measurement by microwave dielectric spectroscopy: Drift correction technique," IMBioc 2018 --- 2018 IEEE/MTT-S International Microwave Biomedical Conference, 85-87, 2018.

28. Karacolak, T., E. C. Moreland, and E. Topsakal, "Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring," Microw. Opt. Technol. Lett., Vol. 55, No. 5, 1160-1164, May 2013.
doi:10.1002/mop.27515

29. Wang, H. C. and A. R. Lee, "Recent developments in blood glucose sensors," J. Food Drug Anal., Vol. 23, No. 2, 191-200, Jun. 2015.
doi:10.1016/j.jfda.2014.12.001

30. Kim, J., A. S. Campbell, and J. Wang, "Wearable non-invasive epidermal glucose sensors: A review," Talanta, Vol. 177, 163-170, Jan. 2018.
doi:10.1016/j.talanta.2017.08.077

31. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," Int. J. Antennas Propag., Vol. 2017, 1-22, 2017.
doi:10.1155/2017/2018527

33. Johnson, K. A. and R. S. Goody, "The original Michaelis constant: Translation of the 1913 Michaelis-Menten Paper," Biochemistry, Vol. 50, No. 39, 8264-8269, Oct. 2011.
doi:10.1021/bi201284u

34. Clarke, W. L., "The original clarke error grid analysis (EGA)," Diabetes Technology and Therapeutics, Vol. 7, No. 5, 776-779, 2005.
doi:10.1089/dia.2005.7.776

35. Vrba, J., D. Vrba, L. Díaz, and O. Fišer, "Metamaterial sensor for microwave non-invasive blood glucose monitoring," IFMBE Proceedings, Vol. 68, No. 3, 789-792, 2019.
doi:10.1007/978-981-10-9023-3_143