Vol. 98
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-10
Design and Analysis of Millimeter Wave Dielectric Resonator Antenna for 5G Wireless Communication Systems
By
Progress In Electromagnetics Research C, Vol. 98, 239-255, 2020
Abstract
Today, worldwide more than five billion of wireless devices are directly communicating for voice and data transmission. The amount of data utilization has increased remarkably and here comes 5G technology with more prominent features, offering high data rate, low latency rate, efficient EM spectrum utilization, an immense machine-2-machine communication, etc. The efficient implementation of 5G technologies requires efficient and compact antennas. This work presents a novel multiband rectangular dielectric resonator antenna for future 5G wireless communication system, having stacked radiator with semi-circular slots etched on the left and right sides of an upper radiator. Additionally, a semi-elliptical slots rectangular microstrip patch antenna of the same dimensions for the purpose of comparison is designed. 28 and 38 GHz, which are the proposed 5G bands by most researchers, are the core target of this work. Alumina with a high relative permittivity of 9.8 is used as a radiator in the design of DRA, while common in the design of both proposed antennas, Rogers RT/DUROID 5880 with a relative permittivity of 2.2 having standard thickness is used as substrate material. Both the proposed antennas have an overall same size of 13 x 11.25 mm2. The proposed dielectric antenna resonates at 25.4, 34.6, and 38 GHz with a 7.34, 4.04 and 3.30 GHz of wide impedance bandwidth covering the targeted 5G, 28 and 38 GHz bands, having a good return loss of -34.7, -31.8 and -33.5 dB, respectively. Further, the proposed dielectric antenna has a maximum radiation efficiency of 97.63%, with overall radiation efficiency greater than 90%, and maximum gain of 7.6 dBi is also noted. On the other hand, the proposed microstrip antenna resonates at 28 and 38 GHz with a 1.49 and 1.01 GHz of moderate impedance bandwidth, having -23.6 and -27.1 dB of satisfactory return loss. Further, the proposed patch antenna has a maximum radiation efficiency of 90.33% at 28 GHz, with overall radiation efficiency of greater than 84%, and moderate gain of 5.45 dBi is also noted. Both the proposed antennas have a nearly omnidirectional radiation pattern at resonance frequencies, with VSWR less than 2. Comparative study of the two proposed antennas regarding radiation efficiency, return loss, gain, data rate and impedance bandwidth evidently shows that performance of DRA over MPA at millimeter wave is very good. The proposed antennasare simulated in CST Microwave studio v18.
Citation
Muhammad Anab, Muhammad Irfan Khattak, Syed Muhammad Owais, Abbas Ali Khattak, and Asif Sultan, "Design and Analysis of Millimeter Wave Dielectric Resonator Antenna for 5G Wireless Communication Systems," Progress In Electromagnetics Research C, Vol. 98, 239-255, 2020.
doi:10.2528/PIERC19102404
References

1. Commission of the European Communities, Staff Working Document, "Exploiting the employment potential of ICTs,", Apr. 2012.
doi:10.1109/MCOM.2014.6736752

2. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Ggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, Feb. 2014.
doi:10.1109/JPROC.2012.2186214

3. Ying, Z., "Antennas in cellular phones for mobile communications," Proceedings of the IEEE, Vol. 100, No. 7, 2286-2296, Jul. 2012.
doi:10.1109/MCOM.2014.6736752

4. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," Communications Magazine, Vol. 52, No. 2, 122, 130, IEEE, Feb. 2014.
doi:10.1109/MCOM.2014.6894452

5. Elkashlan, M., T. Q. Duong, and H.-H. Chen, "Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]," IEEE Communications Magazine, Vol. 52, No. 9, 52-54, 2014.

6. Ali, M. M. M., O. Haraz, S. Alshebeili, and A. R. Sebak, "Broadband printed slot antenna for the fifth generation (5G) mobile and wireless communications," 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, Montreal, QC, 2016.

7. Parchin, N. O., M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, Nanjing, 2016.

8. El-Bacha, A. and R. Sarkis, "Design of tilted taper slot antenna for 5G base station antenna circular array," 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, Beirut, 2016.
doi:10.1109/MCOM.2014.6894454

9. Hong, W., K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mm Wave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/ICUFN.2017.7993764

10. Al-Falajy, N. and O. Y. K. Alani, "Design considerations of ultra dense 5G network in millimeter wave band," 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), 141-146, 2017.
doi:10.1109/APS.2015.7305610

11. Outerelo, D. A., A. V. Alejos, M. G. Sanchez, and M. V. Isasa, "Microstrip antenna for 5G broadband communication: Overview of design issues," 2015 IEEEinternational Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2443-2444, 2015.
doi:10.1109/ICMIM.2017.7918846

12. Ahmad, W. and W. T. Khan, "Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications," 2017 IEEE MTTS International Conference on micromaves for Intelligent Mobility (ICMIM), 21-24, 2017.

13. Wu, T.-Y. and T. Chang, "Interference reduction by millimeter wave technology for 5G based green communications ," IEEE Journals & Magazines, Vol. 4, 10228-10234, 2016.
doi:10.1109/ICETEESES.2016.7581361

14. Rouy, P., R. K, Vishwakarma, A. Jain, and R. Singh, "Multiband millimeter wave antenna array for 5G communication," 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), 102-105, 2016.
doi:10.1109/TAP.2010.2046861

15. Chen, X.-P., K. Wu, L. Han, and F. He, "Low-cost high planar antenna array for 60-GHz band applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2126-2129, Jun. 2010.
doi:10.1109/TAP.2011.2123058

16. Biglarbegian, B., M. Fakharzadeh, D. Busuioc, M.-R. N. Ahmadi, and S. S. Naeini, "Optimized micro strip antenna arrays for emerging millimeter wave wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1742-1747, May 2011.
doi:10.1109/TAP.2012.2220331

17. Wang, L., Y.-X. Guo, and W.-X. Sheng, "Wideband high-gain 60-GHz LTCCL probe patch antenna array with a soft surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1802-1809, Apr. 2013.
doi:10.1109/TAP.2014.2311994

18. Li, M. and K.-M. Luk, "Low-cost wideband micro strip antenna array for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3012-3018, Jun. 2014.

19. Balanis, C. A., Antenna Theory Analysis and Design, Wiley & Sons Ltd, New Jersy, 2005.

20. Huang, Y. and K. Boyle, Antennas from Theory to Practice, Wiley & Sons Ltd, West Sussex, 2008.

21. Khan, M., S. U. Rahman, M. K. Khan, and M. Saleem, "A dual notched band printed monopole antenna for ultra-wide band applications," 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016.

22. Rahman, S. U., M. I. Khan, N. Akhtar, and F. Murad, "Planar dipole antenna for tri-band PCS and WLAN communications," Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016.

23. Ali, M. M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2016.

24. Saini, J. and S. K. Agarwal, "Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G applications," 2017 International Conference on Computer, Communications and Electronics (Comptelix), 227-230, IEEE Conference Publications, 2017.

25. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," Access, Vol. 2, 909, 913, IEEE, 2014.

26. Haraz, O. M., A. Elboushi, and A.-R. Sebak, "New dense dielectric patch array antenna for future 5G short-range communications," The 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM 2014), Victoria, Canada, Jul. 13-17, 2014.

27. Ali, M. M. M., O. M. Haraz, S. Alshebeili, and A.-R. Sebak, "Design of broadband and dual-band printed slot antennas for the fifth generation (5G) mobile and wireless communications," 32nd National Radio Science Conference NRSC 2015, Egypt, Oct. 6, 2015.
doi:10.1109/74.706069

28. Petosa, A., A. Ittipiboon, Y. M. M. Antar, and D. Roscoe, "Recent advances in dielectric resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.

29. Diao, Y., M. Su, Y. Liu, S. Li, and W. Wang, "Compact and multiband dielectric resonator antenna for mobile terminals," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2015.

30. Embong, N. and M. F. Mansor, "Multiband Dielectric Resonator Antenna (DRA) for Long Term Evolution Advanced (LTE-A) handheld devices," International Conference on Space Science and Communication (IconSpace), Aug. 2015.

31. Jamaluddin, M. H., N. A. Mohammad, and S. Z. Naqiyah, "Size reduction of MIMO dielectric resonator antenna for LTE application," IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Dec. 2016.

32. Sher, C., Z. Chen, J. Yu, Y. Yao, L. Qi, and X. Chen, "A gain enhanced dielectric resonator antenna covering 62–78 GHz band for 5G," International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2018.

33. Sharma, A., A. Sarkar, M. Adhikary, A. Biswas, and M. J. Akhtar, "SIWfed MIMO DRA for future 5G applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2017.

34. Ashikin Jaafar, N., M. H. Jamaluddin, J. Nasir, and N. M. Noor, "H-shaped dielectric resonator antenna for future 5G application," IEEE International RF and Microwave Conference (RFM 2015), 14-16, Dec. 2015.
doi:10.1109/TAP.2009.2029292

35. Perron, A., T. A. Denidni, and A.-R. Sebak, "High-gain hybriddielectric resonator antenna for millimeter-wave applications: Design and implementation," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2882-2892, 2009.

36. Erfani, E., T. Denidni, S. Tatu, and M. Niroo-Jazi, "A broadband and high gain millimeter-wave hybrid dielectric resonator antenna," Proceedings of the 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM’16), 1-2, IEEE, Montreal, Canada, Jul. 2016.
doi:10.1109/TAP.2010.2046852

37. Lai, Q., C. Fumeaux, W. Hong, and R. Vahldieck, "60 GHz aperture-coupled dielectric resonator antennas fed by a halfmode substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 1856-1864, 2010.

38. Coulibaly, Y., M. Nedil, I. Ben Mabrouk, L. Talbi, and T. A. Denidni, "High gain rectangular dielectric resonator for broadband millimeter-waves underground communications," Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering (CCECE’11), 001088-001091, IEEE, Ontario, Canada, May 2011.

39. Coulibaly, Y., M. Nedil, L. Talbi, and T. A. Denidni, "Design of high gain and broadband antennas at 60GHz for underground communications systems," International Journal of Antennas and Propagation, Vol. 2012, Article ID 386846, 7 pages, 2012.
doi:10.1109/TAP.2013.2262667

40. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4354-4357, 2013.

41. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low mutual coupling 60-GHz MIMO antenna system with frequency selective surface wall," IEEE Antennas and Wireless Propagation Letters, 2016.

42. Bijumon, P. V., Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "Integrated dielectric resonator antennas for system on-chip applications," Proceedings of the International Conference on Microelectronics (ICM’07), 275-278, IEEE, Cairo, Egypt, Dec. 2007.

43. Allabouche, K., V. Bobrovs, F. Fererro, L. Lizzi, J.-M. Ribero, N. El Amrani El Idrissi, M. Jorio, and M. Elbakali, "Multiband rectangular dielectric resonator antenna for 5G applications," International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 2017.

44. McAllister, M. W., S. A. Long, and G. L. Conway, "Rectangular dielectric resonator antenna," Proceedings of the International Symposium Digest --- Antennas and Propagation, Vol. 21, 696-699, May 1983.
doi:10.1109/8.247779

45. Leung, K. W., K. M. Luk, K. Y. A. Lai, and D. Lin, "Theory and experiment of a coaxial probe fed hemispherical dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1390-1398, 1993.