Vol. 98
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-22
Three-Port Pattern Diversity Antenna Module for 5.2 GHz Ceiling-Mounted WLAN Access Points
By
Progress In Electromagnetics Research C, Vol. 98, 57-67, 2020
Abstract
In this paper, a three-port pattern diversity antenna with a Fabry-Perot cavity (FPC) using a partially reflective surface (PRS) for 5.2 GHz Wireless Local Area Network (WLAN) access points is proposed. The topology of three coaxial-fed circular patch antennas provides an initial beam tilt of 15˚. The PRS aperture, at a height of approximately λ/2, is then shaped in such a way for the antenna to radiate at 0˚, +25˚, -25˚, which results in total coverage of 90˚. The antenna system has an impedance bandwidth of 2% ranging from 5.16 GHz-5.25 GHz (90 MHz bandwidth), covering the IEEE 802.11a band, for a gain of 10 dBi throughout the band and across the ports. The shaped PRS structure provides a gain enhancement of 4.5 dB. The mutual coupling between any two ports in the three-port antenna system is less than 17 dB for a port-to-port distance of 0.67λ.
Citation
Somanatha Pai Swapna, Gulur Sadananda Karthikeya, Shiban Kishen Koul, and Ananjan Basu, "Three-Port Pattern Diversity Antenna Module for 5.2 GHz Ceiling-Mounted WLAN Access Points," Progress In Electromagnetics Research C, Vol. 98, 57-67, 2020.
doi:10.2528/PIERC19101605
References

1. Reddy, G. S., A. Kamma, S. Kharche, J. Mukherjee, and S. K. Mishra, "Cross-configured directional uwb antennas for multidirectional pattern diversity characteristics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 853-858, Feb. 2015.
doi:10.1109/TAP.2014.2382687

2. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394

3. Wang, H., L. Liu, Z. Zhang, Y. Li, and Z. Feng, "Ultra-compact three-port mimo antenna with high isolation and directional radiation patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1545-1548, 2014.
doi:10.1109/LAWP.2014.2344104

4. Cui, L., W. Wu, and D. Fang, "Wideband circular patch antenna for pattern diversity application," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1298-1301, 2015.
doi:10.1109/LAWP.2015.2403358

5. Sun, L., G. Zhang, B. Sun, W. Tang, and J. Yuan, "A single patch antenna with broadside and conical radiation patterns for 3g/4g pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 433-436, 2016.
doi:10.1109/LAWP.2015.2451132

6. Saurav, K., N. K. Mallat, and Y. M. M. Antar, "A three-port polarization and pattern diversity ring antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1324-1328, Jul. 2018.
doi:10.1109/LAWP.2018.2844170

7. Chacko, B. P., G. Augustin, and T. A. Denidni, "FPC antennas: C-band point-to-point communication systems," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 56-64, Feb. 2016.
doi:10.1109/MAP.2015.2501240

8. Sultan, F. and S. S. I. Mitu, "Superstrate-based beam scanning of a Fabry-Perot cavity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1187-1190, 2016.
doi:10.1109/LAWP.2015.2499261

9. Xie, P., G. Wang, H. Li, and J. Liang, "A dual-polarized two-dimensional beam-steering Fabry-Pérot cavity antenna with a reconfigurable partially reflecting surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2370-2374, 2017.
doi:10.1109/LAWP.2017.2718567

10. Liu, Z., Z. Cao, and L. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 524-527, 2016.
doi:10.1109/LAWP.2015.2456886

11. Costa, F., D. Bianchi, A. Monorchio, and G. Manara, "Linear Fabry-Perot/leaky-wave antennas excited by multiple sources," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5150-5159, Oct. 2018.
doi:10.1109/TAP.2018.2860038

12. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008

13. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

14. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized Fabry-Perot antenna with wideband low-rcs property," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 853-856, May 2018.
doi:10.1109/LAWP.2018.2820015

15. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially re ective surfaces for broadband Fabry-Perot cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755

16. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and rcs reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896

17. Guzmán-Quirós, R., A. R. Weily, J. L. Gómez-Tornero, and Y. J. Guo, "A Fabry-Pérot antenna with two-dimensional electronic beam scanning," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1536-1541, Apr. 2016.
doi:10.1109/TAP.2016.2525832

18. Cisco Aironet 2800 Series Access Points, Cisco, , 2, 2019.

19. Wang, H., L. Liu, Z. Zhang, and Z. Feng, "Wideband tri-port mimo antenna with compact size and directional radiation pattern," Electronics Letters, Vol. 50, No. 18, 1261-1262, Aug. 2014.
doi:10.1049/el.2014.2291

20. Kim, J. H., C. Ahn, and J. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, Mar. 2016.
doi:10.1109/TAP.2016.2518650

21. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband fabry-perot resonator antenna with two complementary FSS layers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533

22. Li, H., G. Wang, T. Cai, J. Liang, and X. Gao, "Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5121-5129, Oct. 2018.
doi:10.1109/TAP.2018.2858181

23. Mao, C., Y. Yang, X. He, J. Zheng, and T. Liu, "Design of high-gain dual-band dual-circular-polarised antenna using reflective metasurface," Electronics Letters, Vol. 53, No. 22, 1448-1450, 2017.
doi:10.1049/el.2017.2479

24. Aziz, R. S., T. Kim, J. Park, Y. Ryu, and S. Park, "EM lens design using thin planar metasurfaces for high antenna gain and low sll applications," IET Microwaves, Antennas Propagation, Vol. 13, No. 7, 950-958, 2019.
doi:10.1049/iet-map.2018.5671

25. Chen, Q. and H. Zhang, "High-gain circularly polarized Fabry-Pérot patch array antenna with wideband low-radar-cross-section propert," IEEE Access, Vol. 7, 8885-8889, 2019.
doi:10.1109/ACCESS.2018.2890691