Vol. 96
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-05
Fast and Broad Band Calculation of the Dyadic Green's Function in the Rectangular Cavity; an Imaginary Wave Number Extraction Technique
By
Progress In Electromagnetics Research C, Vol. 96, 243-258, 2019
Abstract
An analytical approach for calculation of the dyadic Green's functions inside the rectangular cavity over a broad range of frequency is presented. Both vector potential and electric field dyadic Green's functions are considered. The method is based on the extraction of the Green's function at an imaginary wave number from itself to obtain a rapidly convergent eigenfunction expansion of the dyadic Green's function. The extracted term encompasses the singularity of the Green's function and are computed using spatial expansions. Results are illustrated for rectangular cavity up to 5 wavelengths in size with thousand of cavity modes obtained by the 6th order convergent expansion. It is shown that for an accurate and broadband simulation, the proposed method is many times faster than the Ewald method.
Citation
Mohammadreza Sanamzadeh, and Leung Tsang, "Fast and Broad Band Calculation of the Dyadic Green's Function in the Rectangular Cavity; an Imaginary Wave Number Extraction Technique," Progress In Electromagnetics Research C, Vol. 96, 243-258, 2019.
doi:10.2528/PIERC19090301
References

1. Tai, C.-T., "Dyadic Green functions in electromagnetic theory," Institute of Electrical & Electronics Engineers, IEEE, 1994.

2. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, 1960.

3. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 31, John Wiley & Sons, 1994.
doi:10.1109/9780470546307

4. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

5. Marliani, F. and A. Ciccolella, "Computationally efficient expressions of the dyadic Green's function for rectangular enclosures," Progress In Electromagnetics Research, Vol. 31, 195-223, 2001.
doi:10.2528/PIER00062901

6. Park, M.-J. and S. Nam, "Rapid summation of the Green's function for the rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2164-2166, 1998.
doi:10.1109/22.739301

7. Araneo, R. and G. Lovat, "An efficient mom formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 294-304, 2008.
doi:10.1109/TEMC.2008.919031

8. Hill, D. A., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, Vol. 35, John Wiley & Sons, 2009.
doi:10.1002/9780470495056

9. Soler, F. J. P., F. D. Q. Pereira, D. Ca nete Rebenaque, Alejandro Alvarez Melcon, and Juan R Mosig, "A novel efficient technique for the calculation of the Green's functions in rectangular waveguides based on accelerated series decomposition," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3260-3270, 2008.
doi:10.1109/TAP.2008.929438

10. Park, M.-J., "Accelerated summation of the Green's function for the rectangular cavity," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 260-262, 2009.
doi:10.1109/LMWC.2009.2017579

11. Gruber, M. E. and T. F. Eibert, "A hybrid ewald-spectral cavity Green's function boundary element method with spectral domain acceleration for modeling of over-moded cavities," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2627-2635, 2015.
doi:10.1109/TAP.2015.2418783

12. Campione, S. and F. Capolino, "Ewald method for 3D periodic dyadic Green's functions and complex modes in composite materials made of spherical particles under the dual dipole approximation," Radio Science, Vol. 47, No. 6, 1-11, 2012.
doi:10.1029/2012RS005031

13. Borji, A. and S. Safavi-Naeini, "Rapid calculation of the Green's function in a rectangular enclosure with application to conductor loaded cavity resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 7, 1724-1731, 2004.
doi:10.1109/TMTT.2004.830488

14. Tsang, L. and S. Huang, "Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetics Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605

15. Tan, S. and L. Tsang, "Green's functions, including scatterers, for photonic crystals and metamaterials," JOSA B, Vol. 34, No. 7, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450

16. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green's function," Optics Letters, Vol. 42, No. 22, 4667-4670, 2017.
doi:10.1364/OL.42.004667

17. Tan, S. and L. Tsang, "Efficient broadband evaluations of lattice Green's functions via imaginary wavenumber components extractions," Progress In Electromagnetics Research, Vol. 164, 63-74, 2019.

18. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBG)," Optics Express, Vol. 24, No. 2, 945-965, 2016.
doi:10.1364/OE.24.000945

19. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green's function method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584

20. Arcioni, P., M. Bozzi, M. Bressan, G. Conciauro, and L. Perregrini, "The BI-RME method: An historical overview," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applicatio, 1-4, IEEE, 2014.

21. Bozzi, M., L. Perregrini, and K. Wu, "Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 3153-3161, 2008.
doi:10.1109/TMTT.2008.2007140

22. Guglielmi, M., R. Sorrentino, and G. Conciauro, Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filter, John Wiley & Sons, Inc., 1999.

23. Tsang, L., K.-H. Ding, T.-H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green's function with higher order low wavenumber extractions," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 16-25, 2017.
doi:10.1109/TEMC.2017.2727958

24. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green's functions (electromagnetic theory)," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, 1989.
doi:10.1109/8.43544

25. Wang, J., "A unified and consistent view on the singularities of the electric dyadic Green's function in the source region," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 463-468, 1982.
doi:10.1109/TAP.1982.1142802

26. Yaghjian, A. D., "Electric dyadic Green's functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, 1980.
doi:10.1109/PROC.1980.11620

27. Johnson, W. A., A. Q. Howard, and D. G. Dudley, "On the irrotational component of the electric Green's dyadic," Radio Science, Vol. 14, No. 6, 961-967, 1979.
doi:10.1029/RS014i006p00961

28. Rahmat-Samii, Y., "On the question of computation of the dyadic Green's function at the source region in waveguides and cavities (short papers)," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 9, 762-765, 1975.
doi:10.1109/TMTT.1975.1128671