Vol. 98
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-22
Step-Shaped Cavity-Backed Antenna and Wideband Wide-Angle Impedance Matching in Planar Phased Array
By
Progress In Electromagnetics Research C, Vol. 98, 45-55, 2020
Abstract
An improved wideband cavity-backed antenna and a planar phased array with wideband wide-angle impedance matching (WAIM) are provided in this paper. A step-shaped cavity is applied in the antenna, so the relative bandwidth of VSWR < 2 can be improved to more than 52% without increasing the cavity profile. Furthermore, a planar phased array constructed by the cavity-backed antenna can work with a wide-angle scanning range of ±60° at both E- and H-planes. Due to the wide-angle scanning range, the impedance matching for the phased array will be unstable in the required wideband. Consequently, the matching layer with metamaterials has been loaded on the phased array. The VSWR is controlled within 2 in E-plane and 3.5 in H-plane during the scanning range of ±60° in wide bandwidth.
Citation
Yaqing Wen, Guoming Gao, and Wenjun Chen, "Step-Shaped Cavity-Backed Antenna and Wideband Wide-Angle Impedance Matching in Planar Phased Array," Progress In Electromagnetics Research C, Vol. 98, 45-55, 2020.
doi:10.2528/PIERC19081701
References

1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House Antennas and Propagation Library, Artech Print on Demand, 2008.

2. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., Wiley, New York, NY, USA, 1997.

3. Awida, M. H., A. H. Kamel, and A. E. Fathy, "Analysis and design of wide-scan angle wide-band phased arrays of substrate-integrated cavity-backed patches," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3034-3041, Jun. 2013.
doi:10.1109/TAP.2013.2251595

4. Ding, Z. F., S. Q. Xiao, C. R. Liu, M. C. Tang, C. Zhang, and B. Z. Wang, "Design of a broadband, wide-beam hollow cavity multilayer antenna for phased array applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1040-1043, 2016.
doi:10.1109/LAWP.2015.2491180

5. Yang, W. W. and J. Y. Zhou, "Wideband circularly polarized cavity-backed aperture antenna with a parasitic square patch," IEEE Antennas Wireless Propag. Lett., Vol. 13, 197-200, 2014.
doi:10.1109/LAWP.2014.2298252

6. Xia, R.-L., S.-W. Qu, S. W. Yang, and Y. Chen, "Wideband wide-scanning phased array with connected backed cavities and parasitic striplines," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1767-1775, Apr. 2018.
doi:10.1109/TAP.2018.2803131

7. Magill, E. and H. A. Wheeler, "Wide-angle impedance matching of a planar array antenna by a dielectric sheet," IEEE Trans. Antennas Propag., Vol. 14, No. 1, 49-53, Jan. 1966.
doi:10.1109/TAP.1966.1138622

8. Chen, C. C., "Broad-band impedance matching of rectangular waveguide phased arrays," IEEE Trans. Antennas Propag., Vol. 21, No. 3, 298-302, May 1973.
doi:10.1109/TAP.1973.1140509

9. Oliveri, G. and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 467-481, Feb. 2011.
doi:10.1109/TAP.2010.2096400

10. Oliveri, G., M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by Bayesian compressive sampling," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2309-2326, May 2012.
doi:10.1109/TAP.2012.2189742

11. Qu, S.W., D. J. He, S.W. Yang, and Z. P. Nie, "Novel parasitic microstrip arrays for low-cost active phased array applications," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1731-1737, Apr. 2014.
doi:10.1109/TAP.2013.2262071

12. Qu, S. W., D. J. He, M. Y. Xiao, Z. P. Nie, and C. H. Chan, "High efficiency periodic sparse patch array based on mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1317-1320, 2011.

13. Qu, S. W., P. F. Li, R. L. Xia, S. W. Yang, J. Hu, and Z. P. Nie, "Low-cost periodic sparse cavity-backed phased array based on multiport elements," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4175-4179, Sept. 2015.
doi:10.1109/TAP.2015.2444433

14. Xiao, S. W., S. W. Yang, H. Y. Zhang, Q. S. Xiao, Y. K. Chen, and S. W. Qu, "Practical implementation of wideband and wide-scanning cylindrically conformal phased array," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5729-5733, Aug. 2019.
doi:10.1109/TAP.2019.2922760

15. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multilayer WAIM coatings for planar-phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015.
doi:10.1109/TAP.2015.2415516

16. Sajuyigbe, S., et al. "Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas," IET Microw. Antennas Propag., Vol. 4, No. 8, 1063-1072, Aug. 2010.
doi:10.1049/iet-map.2009.0543

17. Cameron, T. R. and V. George, "Eleftheriades analysis and characterization of a wide-angle impedance matching metasurface for dipole phased arrays," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 3928-3938, Sept. 2015.
doi:10.1109/TAP.2015.2448231

18. Cameron, T. R. and V. George, "Experimental validation of a wideband metasurface for wide-angle scanning leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5245-5256, Oct. 2017.
doi:10.1109/TAP.2017.2735454

19. Jiang, Z. H., J. A. Bossard, X. Wang, and D. H. Werner, "Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm," J. Appl. Phys., Vol. 109, No. 1, 013515, Jan. 2011.
doi:10.1063/1.3530849

20. Zou, W.-M., S.-W. Qu, and S. W. Yang, "Wideband wide-scanning phased array in triangular lattice with electromagnetic band-gap structures," IEEE Trans. Antennas Propag., Vol. 18, No. 3, 422-426, Mar. 2019.
doi:10.1109/LAWP.2019.2893174

21. Wen, Y.-Q, B.-Z. Wang, and X. Ding, "A wide-angle scanning and low sidelobe level microstrip phased array based on genetic algorithm optimization," IEEE Trans. Antennas Propag., Vol. 64, No. 2, Feb. 2016.
doi:10.1109/TAP.2015.2507173