Vol. 96
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-04
Substrate Integrated Waveguide Circular Antenna for Terahertz Application
By
Progress In Electromagnetics Research C, Vol. 96, 229-242, 2019
Abstract
This paper presents a multi-band annular ring antenna that is obtained from a single-layer probe-fed substrate integrated waveguide based on a graphene material, with three top plan slits. In order to create a multi-bands antenna, we conduct simulation of the antenna structure based on CST/HFSS, so we use parametric tuning to adjust TM modes. Simulations show a good results between the two methods (finite element method and integral method) CST and HFSS Simulators. The bandwidths for three modes are 340 GHz in first mode, 346 GHz in the second mode, and 104 GHz in the third mode. The simulation gains at TM11, TM02, and TM12 are 8.2 dB, 8 dB, and 11 dB, respectively. The proposed antenna can be used in therahertz applications.
Citation
Radhoine Aloui, Zied Houaneb, and Hassen Zairi, "Substrate Integrated Waveguide Circular Antenna for Terahertz Application," Progress In Electromagnetics Research C, Vol. 96, 229-242, 2019.
doi:10.2528/PIERC19080607
References

1. Kyungho, H., T. K. Nguyen, I. Park, and H. Han, "Terahertz Yagi-Uda antenna for high input resistance," J. Infrared Millim. Terahertz Waves, Vol. 31, 441-451, 2010.

2. Smith, P. R., D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron., Vol. 24, No. 2, 255-260, Feb. 1988.
doi:10.1109/3.121

3. Van Exter, M., C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett., Vol. 14, 1128-1130, 1989.
doi:10.1364/OL.14.001128

4. Wu, Q., F. G. Sun, P. Campbell, and X.-C. Zhang, "Dynamic range of an electro-optic field sensor and its imaging applications," Appl. Phys Lett., Vol. 68, 3224-3226, 1996.
doi:10.1063/1.116444

5. Jepson, P. U., R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Amer. B, Vol. 13, 2424-2436, 1996.
doi:10.1364/JOSAB.13.002424

6. Duvillaret, L., F. Garet, and J. L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Topics Quantum Electron., Vol. 2, No. 3, 739-746, Sep. 1996.
doi:10.1109/2944.571775

7. Mittleman, D., Sensing with Terahertz Radiation, Springer-Verlag, 2002.

8. Nasri, A., et al., "A compact SIW mixer for millimeter-wave applications," International Journal of Electrical and Computer Engineering (IJECE), Vol. 4, No. 6, 902-908, 2014.
doi:10.11591/ijece.v4i6.6684

9. Doucha, S., et al., "A leaky wave antenna design based on half-mode substrate integrated waveguide technology for X band applications," International Journal of Electrical and Computer Engineering (IJECE), Vol. 7, No. 6, 3467-3474, 2017.
doi:10.11591/ijece.v7i6.pp3467-3474

10. He, Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005

11. Sotoodeh, Z., B. Biglarbegian, F. Hojjat-Kashani, and H. Ameri, "A novel bandpass waveguide filter structure on SIW technology," Progress In Electromagnetics Research Letters, Vol. 2, 141-148, 2008.
doi:10.2528/PIERL08010204

12. Lin, S., S. Yang, and A. E. Fathy, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

13. Liu, Z. G. and Y. X. Guo, "Dual-band low profile antenna for body centric communications," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2282-2285, Apr. 2013.
doi:10.1109/TAP.2012.2234071

14. Herscovici, N., C. Christodoulou, E. Rajo-Iglesias, O. Quevedo-Teruel, and M. Sainchez-Ferflifldez, "Compact multimode patch antennas for MIMO applications," IEEE Antennas Propag. Mag., Vol. 50, No. 2, 197-205, Apr. 2008.
doi:10.1109/MAP.2008.4562418

15. Guan, D., Z. Qian, W. Cao, L. Ji, and Y. Zhang, "Compact SIW annular ring slot antenna with multiband multimode characteristics," IEEE Antennas Propag. Mag., Vol. 63, No. 12, 5918-5922, Dec. 2015.
doi:10.1109/TAP.2015.2487516

16. Ji, Y. B., et al., "Terahertz reflectometry imaging for low and high-grade gliomas," Scientific Reports, Vol. 6, 36040, 2016.
doi:10.1038/srep36040

17. Guo, W., et al., "Graphene-based broadband terahertz detector integrated with a square-spiral antenna," Optics Letters, Vol. 43, No. 8, 1647-1650, 2018.
doi:10.1364/OL.43.001647

18. Kokotoff, D. M., J. T. Aberle, and R. B. Waterhouse, "Rigorous analysis of probe-fed printed annular ring antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 384-388, Feb. 1999.
doi:10.1109/8.761079

19. Shen, C., S. A. Long, M. R. Allerding, and M. D. Walton, "Resonant frequency of a circular disk, printed circuit antenna," IEEE Trans. Antennas Propag., Vol. 25, No. 4, 595-596, Jul. 1977.
doi:10.1109/TAP.1977.1141643

20. Jackson, D. R., J. T. Williams, et al. Microstrip patch design that do not excite surface waves, Vol. 41, 1026-1037, Aug. 1993.

21. Posadas, V. G., et al., "Approximate analysis of short-circuited ring patch antenna working at TM01 mode," IEEE Trans. Antennas Propag., Vol. 54, 1875-1879, Jun. 2006.
doi:10.1109/TAP.2006.875925

22. Liu, J. H., Q. Xue, H. Wong, H. W. Lai, and Y. L. Long, "Design and, analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 11-18, Jan. 2013.
doi:10.1109/TAP.2012.2214996

23. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, "Microstrip Antenna Design Handbook," Ch. 5, 320, Artech House, 2001.

24. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Ap. Phys., Vol. 103, 064302-064302, 2008.
doi:10.1063/1.2891452

25. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Trans. Antennas Propag., Vol. 64, 1385-1393, 2016.
doi:10.1109/TAP.2016.2521881