Vol. 96
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-03
Enhanced Power Transmission for on-Road AGV Wireless Charging Systems Using a Current-Optimized Technique
By
Progress In Electromagnetics Research C, Vol. 96, 205-214, 2019
Abstract
This paper provides a sound wireless power transfer (WPT) recharging solution for on-road automated guided vehicle (AGV) system. In this solution, multiple transmitting coils serve as power transmitters (TXs), and a receiving coil in AGV serves as a power receiver (RX). The multiple TXs are along a straight track for dynamic charging to AGV. The circuit model of multiple-TX and single-RX WPT system is first constructed based on circuit theory (CT), and then current-optimized scheme based on Lagrangian multiplier method is proposed to tune the currents in multiple TXs to maximize the power delivered to the load (PDL). The equal current (EC Case) flowing through each TX is compared with the optimal current (OC Case). Through contrastive analysis, the OC Case shows its advantages in PDL. Finally, the theoretical analysis results are confirmed by the results of full-wave electromagnetic simulation.
Citation
Jin Zhang, Dong Chen, and Chen Zhang, "Enhanced Power Transmission for on-Road AGV Wireless Charging Systems Using a Current-Optimized Technique," Progress In Electromagnetics Research C, Vol. 96, 205-214, 2019.
doi:10.2528/PIERC19072705
References

1. Tesla, N., Apparatus for transmitting electrical energy, U.S. Patent 1 119 732, Dec. 1, 1914.

2. Andre, K., K. Aristeidis, M. Robert, J. D. Joannopoulos, F. Peter, and S. Marin, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

3. Sample, A. P., D. T. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

4. Zhang, J. and C. Cheng, "“Quantitative investigation into the use of resonant magneto-inductive links for efficient wireless power transfer," IET Microwaves Antennas & Propagation, Vol. 10, 38-44, 2016.
doi:10.1049/iet-map.2014.0783

5. Zhang, F., S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, "Relay effect of wireless power transfer using strongly coupled magnetic resonances," IEEE Transactions on Magnetics, Vol. 47, 1478-1481, 2011.
doi:10.1109/TMAG.2010.2087010

6. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, 360-371, 2013.
doi:10.1109/TIE.2012.2188254

7. Zhong, W., C. K. Lee, and S. Y. R. Hui, "General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, 261-270, 2013.
doi:10.1109/TIE.2011.2171176

8. Zhang, J. and C. Cheng, "Analysis and optimization of three-resonator wireless power transfer system for predetermined-goals wireless power transmission," Energies, Vol. 9, 274, 2016.
doi:10.3390/en9040274

9. Fu, M., Z. Tong, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Transactions on Microwave Theory & Techniques, Vol. 63, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422

10. Fu, M., H. Yin, M. Liu, Y. Wang, and C. Ma, "A 6.78 MHz multiple-receiver wireless power transfer system with constant output voltage and optimum efficiency," IEEE Transactions on Power Electronics, Vol. 33, 5330-5340, 2018.
doi:10.1109/TPEL.2017.2726349

11. Hao, P., L. Lu, and Z. Liang, "Priority evaluation for multiple receivers in wireless power transfer based on magnetic resonance," 2016 IEEE Wireless Power Transfer Conference (WPTC), 1-4, 2016.

12. Zhang, J. and F. Wang, "Efficiency analysis of multiple-transmitter wireless power transfer systems," International Journal of Antennas and Propagation, Vol. 2018, 11, 2018.

13. Zhang, C., D. Lin, and S. Y. Hui, "Basic control principles of omnidirectional wireless power transfer," IEEE Transactions on Power Electronics, Vol. 31, 5215-5227, 2016.

14. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Transactions on Industrial Electronics, Vol. 61, 1774-1783, 2013.
doi:10.1109/TIE.2013.2263780

15. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, 2065-2074, 2012.
doi:10.1109/TCSI.2011.2180446

16. Jadidian, J. and D. Katabi, "Magnetic MIMO: How to charge your phone in your pocket," International Conference on Mobile Computing and Networking, 495-506, 2014.

17. Moghadam, M. R. V. and R. Zhang, "Node placement and distributed magnetic beamforming optimization for wireless power transfer," IEEE Transactions on Signal and Information Processing over Networks, Vol. 4, 264-279, 2018.
doi:10.1109/TSIPN.2017.2689683

18. Yang, G., M. R. V. Moghadam, and R. Zhang, "Magnetic beamforming for wireless power transfer," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3936-3940, 2016.
doi:10.1109/ICASSP.2016.7472415

19. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 58, 3442-3449, 2010.
doi:10.1109/TAP.2010.2071351

20. Zhang, J. and C. Cheng, "Investigation of near-field wireless power transfer between two efficient electrically small planar antennas," 2014 IEEE 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 720-723, 2014.
doi:10.1109/APCAP.2014.6992598

21. Chen, Z., H. Sun, and W. Geyi, "Maximum wireless power transfer to the implantable device in the radiative near field," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1780-1783, 2017.

22. Daniel, K., C. Rathge, and U. Jumar, "Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility," IEEE Transactions on Industrial Electronics, Vol. 60, 372-381, 2013.
doi:10.1109/TIE.2011.2181134

23. Lu, S., C. Xu, R.-Y. Zhong, and L. Wang, "A RFID-enabled positioning system in automated guided vehicle for smart factories," Journal of Manufacturing Systems, Vol. 44, 179-190, 2017.
doi:10.1016/j.jmsy.2017.03.009

24. Huang, S.-J., T.-S. Lee, W.-H. Li, and R.-Y. Chen, "Modular on-road AGV wireless charging systems via interoperable power adjustment," IEEE Transactions on Industrial Electronics, Vol. 66, 5918-5928, 2019.
doi:10.1109/TIE.2018.2873165