Vol. 95
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-09-02
On the Outage Performance of Partial Relay Selection Aided NOMA System with Energy Harvesting and Outdated CSI Over Non-Identical Channels
By
Progress In Electromagnetics Research C, Vol. 95, 107-117, 2019
Abstract
In this paper, the outage probability performance of energy harvesting based partial relay selection aided non-orthogonal multiple access (NOMA) system under outdated channel state information is studied. The source to relays link is assumed to follow Rayleigh fading distribution while the relay nodes to users are subjected to Nakagami-m distribution. The relay nodes employ an energy harvesting power splitting-based relaying protocol to transmit the source information to the users.At the destination, each user is equipped with multiple antennas, and maximum ratio combining is considered for signal reception. In order to evaluate the system performance, the outage probability closed-form expression for the concerned system is derived. The results demonstrate the significant impact of system and channel parameters on the system performance. In addition, the advantage of NOMA over the conventional orthogonal multiple access is also presented. Finally, the accuracy of the derived outage expression is validated through the Monte-Carlo simulation.
Citation
Pius Adewale Owolawi, and Kehinde O. Odeyemi, "On the Outage Performance of Partial Relay Selection Aided NOMA System with Energy Harvesting and Outdated CSI Over Non-Identical Channels," Progress In Electromagnetics Research C, Vol. 95, 107-117, 2019.
doi:10.2528/PIERC19070303
References

1. Bariah, L., S. Muhaidat, and A. Al-Dweik, "Error probability analysis of non-orthogonal multiple access over Nakagami-m fading channels," IEEE Transactions on Communications, Vol. 67, No. 2, 1586-1599, 2019.
doi:10.1109/TCOMM.2018.2876867

2. Liang, X., Y. Wu, D. W. K. Ng, Y. Zuo, S. Jin, and H. Zhu, "Outage performance for cooperative NOMA transmission with an AF relay," IEEE Communications Letters, Vol. 21, No. 11, 2428-2431, 2017.
doi:10.1109/LCOMM.2017.2681661

3. Liu, H., N. I. Miridakis, T. A. Tsiftsis, K. J. Kim, and K. S. Kwak, "Coordinated uplink transmission for cooperative NOMA systems," Proceedings of 2018 IEEE Global Communications Conference (GLOBECOM), 1-6, 2018.

4. Men, J., J. Ge, C. Zhang, M. Li, and Y. Hu, "The impact of channel estimation errors on the performance of cooperative nonorthogonal multiple access 5G systems under Nakagami-m fading," Transactions on Emerging Telecommunications Technologies, Vol. 29, No. 3, e3253, 2018.
doi:10.1002/ett.3253

5. Men, J. and J. Ge, "Performance analysis of non-orthogonal multiple access in downlink cooperative network," IET Communications, Vol. 9, No. 18, 2267-2273, 2015.
doi:10.1049/iet-com.2015.0203

6. Aldababsa, M. and O. Kucur, "Outage performance of NOMA with TAS/MRC in dual hop AF relaying networks," Proceedings of 2017 Advances in Wireless and Optical Communications (RTUWO), 137-141, 2017.
doi:10.1109/RTUWO.2017.8228521

7. Han, W., J. Ge, and J. Men, "Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading," IET Communications, Vol. 10, No. 18, 2687-2693, 2016.
doi:10.1049/iet-com.2016.0630

8. Men, J., J. Ge, and C. Zhang, "Performance analysis for downlink relaying aided non-orthogonal multiple access networks with imperfect CSI over Nakagami-m fading," IEEE Access, Vol. 5, 998-1004, 2016.

9. Lee, S., D. B. da Costa, Q.-T. Vien, T. Q. Duong, R. T. de Sousa, and Jr., "Non-orthogonal multiple access schemes with partial relay selection," IET Communications, Vol. 11, No. 6, 846-854, 2016.
doi:10.1049/iet-com.2016.0836

10. Bao, V. N. Q. and N. T. Van, "Incremental relaying networks with energy harvesting relay selection: Performance analysis," Transactions on Emerging Telecommunications Technologies, Vol. 29, No. 12, e3483, 2018.
doi:10.1002/ett.3483

11. Ye, Y., Y. Li, D. Wang, F. Zhou, R. Q. Hu, and H. Zhang, "Optimal transmission schemes for DF relaying networks using SWIPT," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7062-7072, 2018.
doi:10.1109/TVT.2018.2826598

12. Nasir, A. A., X. Zhou, S. Durrani, and R. A. Kennedy, "Relaying protocols for wireless energy harvesting and information processing," IEEE Transactions on Wireless Communications, Vol. 12, No. 7, 3622-3636, 2013.
doi:10.1109/TWC.2013.062413.122042

13. Ye, J., Z. Liu, H. Zhao, G. Pan, Q. Ni, and M.-S. Alouini, "Relay selections for cooperative underlay CR systems with energy harvesting," IEEE Transactions on Cognitive Communications and Networking, Vol. 5, No. 2, 358-369, 2019.
doi:10.1109/TCCN.2019.2908900

14. Hoang, T. M., N. T. Tan, and S.-G. Choi, "Analysis of partial relay selection in NOMA systems with RF energy harvesting," Proceedings of 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), 13-18, 2018.

15. Michalopoulos, D. S., H. A. Suraweera, and R. Schober, "Relay selection for simultaneous information transmission and wireless energy transfer: A tradeoff perspective," IEEE Journal on Selected Areas in Communications, Vol. 33, No. 8, 1578-1594, 2015.

16. Anh, P. V. T., V. N. Q. Bao, and K. N. Le, "On the performance of wireless energy harvesting TAS/MRC relaying networks over Nakagami-m fading channels," Proceedings of 2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), 1-5, 2016.

17. Men, J., J. Ge, and C. Zhang, "Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels," IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, 1200-1208, 2016.
doi:10.1109/TVT.2016.2555399

18. Soysa, M., H. A. Suraweera, C. Tellambura, and H. K. Garg, "Amplify-and-forward partial relay selection with feedback delay," Proceedings of 2011 IEEEWireless Communications and Networking Conference, 1304-1309, 2011.
doi:10.1109/WCNC.2011.5779318

19. El-Malek, A. H. A., A. M. Salhab, S. A. Zummo, and M.-S. Alouini, "Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling," IEEE Transactions on Wireless Communications, Vol. 15, No. 9, 5904-5918, 2016.
doi:10.1109/TWC.2016.2572681

20. Men, J. and J. Ge, "Non-orthogonal multiple access for multiple-antenna relaying networks," IEEE Communications Letters, Vol. 19, No. 10, 1686-1689, 2015.
doi:10.1109/LCOMM.2015.2472006

21. Gradshteyn, I. S., I. M. Ryzhik, and R. H. Romer, , Tables of Integrals, Series, and Products, 1988.