Vol. 95
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-09-03
Simulations of Ionospheric Behavior Driven by HF Radio Waves at the Initial Stage
By
Progress In Electromagnetics Research C, Vol. 95, 153-166, 2019
Abstract
This study explores the variability in the electric field, plasma number density, and plasma velocity driven by high-frequency (HF) radio wave injected into the vertically stratified ionosphere at a millisecond time scale after switch-on of the radio transmitter. It was found that the modeconversion process of electromagnetic (EM) waves took place at the reflection heights of both the R-X (right-circularly polarized extraordinary wave, R-X) and L-O (left-circularly polarized ordinary wave, L-O) modes. The ionospheric electron number density was remarkably oscillatory. A depletion of ionospheric ion number density at the L-O mode turning point and two ion number density peaks on each side of the O-mode reflection region were discovered. The turbulent layer of the ion density peak at the bottom of the critical height shifted downwards, which qualitatively conforms to the observations made at the Areciboand the EISCAT. The vertical electron velocity oscillated near the L-O mode reflection point. The vertical ion velocity remained positive above the reflection height of the L-O mode and remained negative below this height. These results, which were derived using realistic length scales, ion masses, pump waves, and other plasma parameters, are consistent with theoretical predictions and prior experimental observations, and should thus be useful for understanding the linear and nonlinear interactions between the HF EM wave and the ionospheric plasma at the initial stage.
Citation
Jing Chen, Qingliang Li, Yubo Yan, Haiqin Che, Guanglin Ma, and Guang Yuan, "Simulations of Ionospheric Behavior Driven by HF Radio Waves at the Initial Stage," Progress In Electromagnetics Research C, Vol. 95, 153-166, 2019.
doi:10.2528/PIERC19051102
References

1. Kelley, M. C., The Earth's Ionosphere: Plasma Physics and Electrodynamics, Vol. 96, Academic Press, 2009.

2. Bernhardt, P., W. A. Scales, S. Grach, A. Keroshtin, D. Kotik, and S. Polyakov, "Excitation of artificial airglow by high power radio waves from the "Sura" ionospheric heating facility," Geophys. Res. Lett., Vol. 18, 1477-1480, 1991.
doi:10.1029/91GL01847

3. Carroll, J., E. Violette, and W. Utlaut, "The Platteville high power facility," Radio Sci., Vol. 9, 889-894, 1974.
doi:10.1029/RS009i011p00889

4. Kuo, S. and A. Snyder, "Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP," J. Geophys. Res. --- Space Phys., Vol. 118, 2734-2743, 2013.
doi:10.1002/jgra.50276

5. Robinson, T., F. Honary, A. Stocker, T. Jones, and P. Stubbe, "First EISCAT observations of the modification of F-region electron temperatures during RF heating at harmonics of the electron gyro frequency," Journal of Atmospheric and Terrestrial Physics, Vol. 58, 385-395, 1996.
doi:10.1016/0021-9169(95)00043-7

6. Wu, J., J. Wu, and Z. Xu, "Results of ionospheric heating experiments involving an enhancement in electron density in the high latitude ionosphere," Plasma Sci. Technol., Vol. 18, 890, 2016.
doi:10.1088/1009-0630/18/9/03

7. Blagoveshchenskaya, N., T. Borisova, V. Kornienko, V. Frolov, M. Rietveld, and A. Brekke, "Some distinctive features in the behavior of small-scale arti¯cial ionospheric irregularities at mid-and high latitudes," Radiophys. Quantum Electron., Vol. 50, 619-632, 2007.
doi:10.1007/s11141-007-0054-4

8. Pedersen, T., M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, and V. Paznukhov, "Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic," Ann. Geophys., Vol. 29, 2011.
doi:10.5194/angeo-29-47-2011

9. Kosch, M., T. Pedersen, M. Rietveld, B. Gustavsson, S. Grach, and T. Hagfors, "Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review," Adv. Space Res., Vol. 40, 365-376, 2007.
doi:10.1016/j.asr.2007.02.061

10. Leyser, T., "Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma," Space Sci. Rev., Vol. 98, 223-328, 2001.
doi:10.1023/A:1013875603938

11. Thide, B., H. Kopka, and P. Stubbe, "Observations of stimulated scattering of a strong high-frequency radio wave in the ionosphere," Phys. Rev. Lett., Vol. 49, 1561, 1982.
doi:10.1103/PhysRevLett.49.1561

12. Stubbe, P., H. Kohl, and M. Rietveld, "Langmuir turbulence and ionospheric modification," J. Geophys. Res. --- Space Phys., Vol. 97, 6285-6297, 1992.
doi:10.1029/91JA03047

13. Gurevich, A. V., "Nonlinear effects in the ionosphere," Phys. Usp., Vol. 50, 1091-1121, 2007.
doi:10.1070/PU2007v050n11ABEH006212

14. Huang, J. and S. Kuo, "Cyclotron harmonic effect on the thermal oscillating two-stream instability in the high latitude ionosphere," J. Geophys. Res. --- Space Phys., Vol. 99, 2173-2181, 1994.
doi:10.1029/93JA02668

15. Kuo, S., M. Lee, and P. Kossey, "Excitation of oscillating two stream instability by upper hybrid pump waves in ionospheric heating experiments at Tromso," Geophys. Res. Lett., Vol. 24, 2969-2972, 1997.
doi:10.1029/97GL03054

16. Robinson, T., A. Stocker, G. Bond, P. Eglitis, D.Wright, T. Jones, et al. "First CUTLASS-EISCAT heating results," Adv. Space Res., Vol. 21, 663-666, 1998.
doi:10.1016/S0273-1177(97)01000-4

17. Djuth, F., P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, and J. Elder, "Altitude characteristics of plasma turbulence excited with the Tromso superheater," J. Geophys. Res. --- Space Phys., Vol. 99, 333-339, 1994.
doi:10.1029/93JA02289

18. Wong, A., J. Santoru, and G. Sivjee, "Active stimulation of the auroral plasma," J. Geophys. Res. --- Space Phys., Vol. 86, 7718-7732, 1981.
doi:10.1029/JA086iA09p07718

19. Robinson, T., "The heating of the high lattitude ionosphere by high power radio waves," Physics Reports, Vol. 179, 79-209, 1989.
doi:10.1016/0370-1573(89)90005-7

20. DuBois, D. F., H. A. Rose, and D. Russell, "Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF heating of the ionosphere," J. Geophys. Res. --- Space Phys., Vol. 95, 21221-21272, 1990.
doi:10.1029/JA095iA12p21221

21. Frolov, V., L. Erukhimov, S. Metelev, and E. Sergeev, "Temporal behaviour of artificial small-scale ionospheric irregularities: Review of experimental results," J. Atmos. Sol.-Terr. Phys., Vol. 59, 2317-2333, 1997.
doi:10.1016/S1364-6826(96)00126-5

22. Wong, A., T. Tanikawa, and A. Kuthi, "Observation of ionospheric cavitons," Physical Review Letters, Vol. 58, 1375, 1987.
doi:10.1103/PhysRevLett.58.1375

23. Vas' kov, V. and N. Ryabova, "Parametric excitation of high frequency plasma oscillations in the ionosphere by a powerful extraordinary radio wave," Adv. Space Res., Vol. 21, 697-700, 1998.
doi:10.1016/S0273-1177(97)01006-5

24. Pandey, R. S. and D. Singh, "Study of electromagnetic ion-cyclotron instability in a magnetoplasma," Progress In Electromagnetics Research, Vol. 14, 147-161, 2010.
doi:10.2528/PIERM10052501

25. Xiang, W., Z. Chen, M. Liu, F. Honary, B. Ni, and Z. Zhao, "Threshold of parametric instability in the ionospheric heating experiments," Plasma Sci. Technol., Vol. 20, 115301, 2018.
doi:10.1088/2058-6272/aac71d

26. Duncan, L. and J. Sheerin, "High-resolution studies of the HF ionospheric modification interaction region," J. Geophys. Res. --- Space Phys., Vol. 90, 8371-8376, 1985.
doi:10.1029/JA090iA09p08371

27. Eliasson, B. and L. Stenflo, "Full-scale simulation study of stimulated electromagnetic emissions: The first ten milliseconds," J. Plasma Phys., Vol. 76, 369-375, 2010.
doi:10.1017/S0022377809990559

28. Djuth, F., B. Isham, M. Rietveld, T. Hagfors, and C. La Hoz, "First 100 ms of HF modification at Tromso, Norway," J. Geophys. Res. --- Space Phys., Vol. 109, 2004.
doi:10.1029/2003JA010236

29. Isham, B., W. Birkmayer, T. Hagfors, and W. Kofman, "Observations of small-scale plasma density depletions in Arecibo HF heating experiments," J. Geophys. Res. --- Space Phys., Vol. 92, 4629-4637, 1987.
doi:10.1029/JA092iA05p04629

30. Cros, B., J. Godiot, G. Matthieussent, and A. Heron, "Laboratory simulation of ionospheric heating experiment," Geophys. Res. Lett., Vol. 18, 1623-1626, 1991.
doi:10.1029/91GL01376

31. Eliasson, B., X. Shao, G. Milikh, E. V. Mishin, and K. Papadopoulos, "Numerical modeling of artificial ionospheric layers driven by high-power HF heating," J. Geophys. Res. --- Space Phys., Vol. 117, 2012.

32. Goodman, S., H. Usui, and H. Matsumoto, "Particle-in-cell (PIC) simulations of electromagnetic emissions from plasma turbulence," Phys. Plasmas, Vol. 1, 1765-1767, 1994.
doi:10.1063/1.870680

33. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

34. Simpson, J. J., "On the possibility of high-level transient coronal mass ejection --- induced ionospheric current coupling to electric power grids," J. Geophys. Res. --- Space Phys., Vol. 116, 2011.

35. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag., Vol. 45, 392-400, 1997.
doi:10.1109/8.558654

36. Wang, M.-Y., J. Xu, J. Wu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

37. Simpson, J. J. and A. Taflove, "A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz," IEEE Trans. Antennas Propag., Vol. 55, 1582-1590, 2007.
doi:10.1109/TAP.2007.897138

38. Young, J., "A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci., Vol. 29, 1513-1522, 1994.
doi:10.1029/94RS01921

39. Yu, Y. and J. J. Simpson, "An EJ collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, 469-478, 2010.
doi:10.1109/TAP.2009.2037770

40. Blaunstein, N. and E. Plohotniuc, Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, 2008.
doi:10.1201/9781420055177

41. Rawer, K., Wave Propagation in the Ionosphere, Vol. 5, Springer Science & Business Media, 2013.

42. Fletcher, C. A., "Computational galerkin methods," Computational Galerkin Methods, Springer, Berlin, 1984.

43. Carlson, H. C., W. E. Gordon, and R. L. Showen, "High frequency induced enhancements of the incoherent scatter spectrum at Arecibo," Journal of Geophysical Research, Vol. 77, 1242-1250, 1972.
doi:10.1029/JA077i007p01242

44. Depierreux, S., C. Labaune, J. Fuchs, D. Pesme, V. Tikhonchuk, and H. Baldis, "Langmuir decay instability cascade in laser-plasma experiments," Physical Review Letters, Vol. 89, 045001, 2002.
doi:10.1103/PhysRevLett.89.045001

45. Bryers, C., M. Kosch, A. Senior, M. Rietveld, and T. Yeoman, "The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT," J. Geophys. Res. --- Space Phys., Vol. 118, 7472-7481, 2013.
doi:10.1002/2013JA019429

46. Bernhardt, P., C. Tepley, and L. Duncan, "Airglow enhancements associated with plasma cavities formed during ionospheric heating experiments," J. Geophys. Res. --- Space Phys., Vol. 94, 9071-9092, 1989.
doi:10.1029/JA094iA07p09071

47. Cheng, M., B. Xu, Z. Wu, H. Li, Z. Wang, Z. Xu, et al. "Observation of VHF incoherent scatter spectra disturbed by HF heating," J. Atmos. Sol.-Terr. Phys., Vol. 105, 245-252, 2013.
doi:10.1016/j.jastp.2013.08.010