Vol. 95
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-08-09
Scattering from a Distribution of Rough Plates
By
Progress In Electromagnetics Research C, Vol. 95, 1-13, 2019
Abstract
Modeling how electromagnetic waves scatter from a distribution of rough plates poses many applications. Certain systems may be easy to approximate with planar geometry, but use of numerical field solvers to determine the radiated fields could take a long time for nontrivial structures. We propose a new approach based on the Kirchhoff approximation. This method will consider the case of multiple rough, finite-sized rectangular plates. The solution was used for developing software to determine the scattering of waves off of a distribution of rough plates of arbitrary position and orientation between a transmitter and receiver. The method considers each plate individually, calculating the coherent and incoherent scattered fields. Provided that all plates and the transmitter and receiver are sufficiently spaced, we calculate the total fields by summing the result from each individual plate. For many practical situations, the distance from the plate to the receiver may not be much greater than the size of the plate. We will show that the common far-field approximation of the Green's function is not valid for these cases, and we will have to use a more accurate approximation of Green's function.
Citation
Max Bright, Akira Ishimaru, and Yasuo Kuga, "Scattering from a Distribution of Rough Plates," Progress In Electromagnetics Research C, Vol. 95, 1-13, 2019.
doi:10.2528/PIERC19043003
References

1. Ruck, G., D. Barrick, W. Stuart, and C. Krichbaum, Radar Cross Section Handbook, 523-526, Plenum Press, 1970.
doi:10.1007/978-1-4899-5324-7

2. Johnson, J., R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of the composite surface model for ocean backscattering," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 72-83, 1998.
doi:10.1109/36.655319

3. Li, Q., M. Y. Xia, L. Tsang, L. Zhou, C. H. Chan, and Z. X. Li, "Rough surface scattering: Numerical simulations and applications in microwave remote sensing," Wiley Encyclopedia of RF and Microwave Engineering, 2005.

4. Desanto, J. A. and G. S. Brown, "Analytical techniques for multiple scattering from rough surfaces," Progress in Optics, Vol. XXIII, 1986.

5. Yueh, H. A., R. T. Shin, and J. A. Kong, "Scattering from randomly perturbed periodic and quasiperiodic surfaces," Progress In Electromagnetics Research, Vol. 01, 291-358, 1989.

6. Shramkov, O. I. and A. Y. Sukharevsky, "High-frequency method of antenna directional pattern calculation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2009-2023, 2007.
doi:10.1163/156939307783152858

7. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, "Polarimetric scattering theory for high slope rough surfaces," Progress In Electromagnetics Research, Vol. 14, 1-36, 1996.

8. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Vol. 2, 198-199, IEEE Press-Wiley, 2017.
doi:10.1002/9781119079699

9. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, 1985.

10. Walborn, B., Y. Liu, M. Bright, A. Ishimaru, and Y. Kuga, "Modeling EM wave scattering from tree leaves," URSI Meeting, Boulder, 2018.