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Scattering from a Distribution of Rough Plates

Max Bright*, Akira Ishimaru, and Yasuo Kuga

Abstract—Modeling how electromagnetic waves scatter from a distribution of rough plates poses many
applications. Certain systems may be easy to approximate with planar geometry, but use of numerical
field solvers to determine the radiated fields could take a long time for nontrivial structures. We propose
a new approach based on the Kirchhoff approximation. This method will consider the case of multiple
rough, finite-sized rectangular plates. The solution was used for developing software to determine the
scattering of waves off of a distribution of rough plates of arbitrary position and orientation between a
transmitter and receiver. The method considers each plate individually, calculating the coherent and
incoherent scattered fields. Provided that all plates and the transmitter and receiver are sufficiently
spaced, we calculate the total fields by summing the result from each individual plate. For many
practical situations, the distance from the plate to the receiver may not be much greater than the size
of the plate. We will show that the common far-field approximation of the Green’s function is not valid
for these cases, and we will have to use a more accurate approximation of Green’s function.

1. INTRODUCTION

This paper will discuss modeling scattered fields from distributions of objects that can be represented
as planar geometry. Such objects include house rooftops, building walls and windows, solar panels,
car rooftops, and many other types of geometry of interest in an urban environment. More abstractly,
this concerns how to model the radiation characteristic of a distribution of finite size rough rectangular
plates. Such a model will be useful for determining interference in communication systems, such as
unwanted reflections off of nearby objects. In addition, the problem can be worked backwards. Given a
method for calculating the radiated fields, a desired radiation characteristic could be determined, and
an algorithm could be implemented to optimize plate locations to achieve the desired pattern.

There are two existing ways to approach this problem. For instance, reflections off of flat plates
are well understood [1]. Due to the existence of analytic solutions for the scattered fields, the algorithm
can run very quickly; however, there are tradeoffs. For example, surface roughness parameters are not
considered. In addition, the edge effects of the plate are neglected. Another possibility is the use of
numerical methods. While numerical analysis techniques such as the Finite Element Method can yield
very accurate results, there is a significant tradeoff in computation time and efficiency [2, 3].

Scattering from infinite rough surfaces has been extensively studied [4]. The Small Perturbation
Method and Kirchhoff Approximation are widely used for such problems, particularly when the surface
height variation is quasi-periodic [5]. Another Kirchoff Approximation-based method developed in [6]
takes into account known values for surface height variation, such as data pulled from Earth terrain
elevation data. However, the method does not account for when the surface height is given by a Gaussian
random distribution, as would be the case for minor variations in materials such as soil or pavement.

The study of scattering from finite-size rough surfaces is limited. This paper will introduce an
approach for modeling scattering off of plates that will add consideration of roughness effects. Analytic
equations will be used, which will yield a significant computational advantage over numerical methods.
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2. KIRCHHOFF APPROXIMATION FOR A SINGLE PLATE

2.1. Coordinate System and Definitions

We will begin by modeling scattering from a single plate.
Figure 1 shows the coordinate system and definitions that we will use for the TM case. For TE

case, we make the substitutions: ĥi(+H̄) becomes ĥi(+Ē), v̂i(+Ē) becomes v̂i(−H̄), v̂s(+Ē) becomes
v̂s(+H̄), and ĥs(−H̄) becomes ĥs(+Ē).

We define a plate as a rectangular surface of dimensions 2a×2b. We assume that the plate thickness
is much larger than the skin depth. We will consider a transmitter and receiver at arbitrary locations
relative to the plate, and we will consider incidence in TM and TE cases, with polarizations defined in
terms of v̂ and ĥ vectors. The coordinate system is outlined in Fig. 1.

A Gaussian model will be used for modeling the roughness of the plate surface. This yields two
parameters: the surface root mean square (rms) height 〈h〉, which indicates the height variance, and

Figure 1. Coordinate system for a single plate, TM case.

Figure 2. Valid region for Kirchhoff approximation in terms of surface roughness [7].
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the correlation length l, which indicates the distance between similar features in the surface. Both
contribute to the surface slope, and the Kirchhoff approximation is valid for certain surface slope cases
which can be seen in Fig. 2 [7].

We want to derive scattering amplitudes, which let us relate coherent incident and scattered electric
fields, and the cross sections, which let us evaluate incoherent scattered power.

2.2. Equation Setup

We begin with the basic assumption of the Kirchhoff approximation, requiring that the fields locally
reflected on the plate are equal to the incident fields [2–4]. We start with

n̂1 × H̄r = n̂1 × H̄surf

Ēr × n̂1 = Ēsurf × n̂1
(1)

where we define H̄r and Ēr as the reflected E and H fields in specular directions, and

|Esurf | = R⊥/‖ |Ei| e−iki·r̄1 (2)

where R⊥/‖ is the infinite flat surface reflection coefficient, in either parallel (R‖) or perpendicular (R⊥)
polarization. We will denote:

Ēis =
Ēsurf

e−iki·r̄1
(3)

Similar definitions follow for H̄.
From the Franz equations, following the derivation in [8], we have:

Ē = ∇×∇×Π̄ + iωμ∇× Π̄m (4)

Where

Π̄ =
1

iωε

∫
S

n̂ × H̄iGdxdy

Π̄m =
1

iωμ

∫
S

Ēi × n̂Gdxdy

(5)

and G is the free space Green’s function:

G =
eik|r̄−r̄1|

4π |r̄ − r̄1| (6)

And S is the plate surface: −a < x < a, −b < y < b.

2.3. Green’s Function Approximation

For the scattering problem, a far field approximation is commonly used for Green’s function. However,
we will show that a simple far field approximation is not valid for scattering from a finite size plate in
some cases. Therefore, we want to simplify Eq. (6) by performing a Taylor expansion on the argument
of the exponential and keeping an extra term:

ik |r̄ − r̄1|
which is equivalently

ik

√
R2

0 + �r2
1 − 2R0�r1 · k̂s = ikR0

√
1 − X

where R0 is the distance from the center of the plate to the receiver

X =
2R0�r1 · k̂s − |�r1|2

R2
0

(7)

We know the first order Taylor expansion for a square root is:
√

1 − X ∼= 1 − 1
2
X
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So

ikR0

√
1 − X = ikR0

(
1 − 1

2

(
2R0�r1 · k̂s − |�r1|2

R2
0

))

Therefore

ik |r̄ − r̄1| ∼= ik

[
R0 − �r1 · k̂s +

|�r1|2
2R0

]
(8)

So G can now be approximated as:

G ∼= e
ikR0−i(k̄s)·r̄1+

ik(x2+y2)
2R0

4πR0
(9)

The normal far field approximation would have only used the first two terms in Eq. (7):

G ∼= eikR0−i(k̄s)·r̄1

4πR0
(10)

2.4. Ei and Es Relationships

In the far field, k̄s is proportional to ei(k̄s)·r̄1. We have

∇ei(k̄s)·r̄1 = i(k̄s) · ei(k̄s)·r̄1

Therefore, an operation ∇ is equivalent to i(k̄s). This means:

∇×∇× . . . = −k2
(
k̂s

)
×
(
k̂s

)
× . . .

∇× . . . = i
(
k̄s

)× . . .
(11)

Therefore:

Esv =
iωμ

4πR0
eikR0

∫
S

v̂ · (n̂ × H̄surf

)
e−i(k̄s)·r̄1e

ik(x2+y2)
2R0 dxdy

− ik

4πR0
eikR0

∫
S

ĥ · (Ēsurf × n̂
)
ei(k̄s)·r̄1e

ik(x2+y2)
2R0 dxdy (12)

For Ēsh, vector v̂ is replaced by ĥ, and ĥ is replaced by v̂.
Splitting Ēi into v and h components (TM and TE), we get:[

Esv

Esh

]
= 1

R0
eikR0

[
fvv fvh

fhv fhh

] [
Eiv

Eih

]
(13)

where:

Eivfvv =
ik

4π

(
v̂s ·

(
n̂ × ωμ

k
H̄is

)
TM

− ĥs ·
(
Ēis × n̂

)
TM

)
I

Eihfvh =
ik

4π

(
v̂s ·

(
n̂ × ωμ

k
H̄is

)
TE

− ĥs ·
(
Ēis × n̂

)
TE

)
I

Eivfhv =
ik

4π

(
−ĥs ·

(
n̂ × ωμ

k
H̄

is

)
TM

− v̂s ·
(
Ēis × n̂

)
TM

)
I

Eihfhh =
ik

4π

(
−ĥs ·

(
n̂ × ωμ

k
H̄is

)
TE

− v̂s ·
(
Ēis × n̂

)
TE

)
I

(14)

I =
∫
s

ei(k̄s−k̄i)·r̄1e
ik(x2+y2)

2R0 dS (15)

Although we are using I in Eq. (15), I is not the intensity of the field.
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2.5. Evaluation of I

Evaluation of
∫

ei(K̄−K̄i)·r̄1dS:

r̄1 =

⎡
⎣ x

y

f(x, y)

⎤
⎦

So the integral is equivalently:

I =
∫
S

e−iv̄·r̄1e−ivzf(x,y)e
ik(x2+y2)

2R0 dS (16)

where we define:

v̄ =

⎡
⎣ ksx − kix

ksy − kiy

0

⎤
⎦ =

⎡
⎣ kx

ky

0

⎤
⎦

vz = ksz − kiz = k(cos (θs) + cos (θi))

Since we cannot evaluate the surface height f(xy) directly, we evaluate (16) as an average:

〈I〉 =
∫
S

e−iv̄·r̄1

〈
e−ivzf(x,y)

〉
e

ik(x2+y2)
2R0 dxdy

where we can find 〈
e−ivzf(x,y)

〉
= e−

1
2
v2

z(h)2 (17)

where 〈h〉 is the surface rms height.
Rearranging, we get:

〈I〉 = e−
1
2
v2

z〈h〉2
⎛
⎝ a∫
−a

e−ikx∗xe
ik

2R0
(x2)dx

⎞
⎠
⎛
⎝ b∫
−b

e−iky∗ye
ik

2R0
(y2)dy

⎞
⎠

Evaluating the integral, we get:

〈I〉 = Î (kx, a) Î (ky, b) e−
1
2
k2(cos(θs)+cos(θi))

2〈h〉2 (18)

where

Î (kn, c) =
(−1)

1
4 e−

ik2
nR0
2k

√
π√

2k
R0

⎛
⎜⎜⎝Erf

⎛
⎜⎜⎝

(−1)
3
4

(
−c

k

R0
+ kn

)
√

2k
R0

⎞
⎟⎟⎠− Erf

⎛
⎜⎜⎝

(−1)
3
4

(
2c

k

R0
+ kn

)
√

2k
R0

⎞
⎟⎟⎠
⎞
⎟⎟⎠

where kn corresponds to either kx or ky, and c corresponds to either a or b
If we used the simple far field approximation given by Eq. (10), we would have gotten

〈I〉 = (2a) (2b) IxIye
− 1

2
k2(cos(θs)+cos(θi))

2〈h〉2 (19)

where
Ix =

sin (kxa)
kxa

, Iy =
sin (kxb)

kyb

Later we will show that the error in 〈I〉 becomes unacceptable if we use Eq. (19)
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2.6. Evaluation of Scattering Amplitudes f

Continuing from Eq. (14) we can calculate the locally reflected surface fields as:(
H̄is

)
TM

= −R‖Hiĥr

(
H̄is

)
TE

= R⊥Hiv̂r(
Ēis

)
TM

= R‖Ei
v̂r

(
Ēis

)
TE

= R⊥Eiĥr

where ĥr and v̂r are evaluated in the specular direction, and we use the infinite flat surface reflection
coefficients R‖ and R⊥, and εr0 and εr1 are the complex permittivities of the surrounding air and plate,
respectively.

Given these and since |Hi| = k
ω0μ |Ei|, we simplify the scattering amplitudes as:

fvv =
ik

4π
R‖
(
−v̂s ·

(
n̂ × ĥr

)
− ĥs · (v̂r × n̂)

)
I

fvh =
ik

4π
R⊥

(
v̂s · (n̂ × vr) − ĥs ·

(
ĥr × n̂

))
I

fhv =
ik

4π
R‖
(
ĥs ·

(
n̂ × ĥr

)
− v̂s · (v̂r × n̂)

)
I

fhh =
ik

4π
R⊥

(
−ĥs · (n̂ × v̂r) − v̂s ·

(
ĥr × n̂

))
I

Evaluating these in terms of the incident and scattered angles, we arrive at our final expression for the
scattering amplitudes:

fvv =
ik

4π
R‖I cos (φi − φs) (cos θi + cos θs), fvh = − ik

4π
R⊥I sin (φi − φs) (1 + cos (θi) cos (θs))

fhv = − ik

4π
R‖I sin (φi − φs) (1 + cos θi cos θs) , fhh =

ik

4π
R⊥I cos (φi − φs) (cos θi + cos θs)

(20)

2.7. Evaluation of Cross Sections σ

We define the cross sections as:

σnm = 4πR2
0

〈∣∣∣∣ 1
R0

eikR0fnm

∣∣∣∣
〉

(21)

We also rewrite the scattering amplitudes as:

fnm = ± ik

4π
R‖/⊥AnmI

where Anm denotes the trigonometric functions in the scattering amplitudes.
Evaluating this: ∣∣∣∣ 1

R0
eikR0fnm

∣∣∣∣
2

=
k2

(4πR0)
2 |Anm|2 R2

‖/⊥
(
I1
)2 (22)

We can easily obtain expressions for |Anm|2 R2
‖/⊥. We split the evaluation of 〈I〉 into coherent and

incoherent components. The coherent component was already evaluated for the scattering amplitudes
in Eq. (18).

The summation of the coherent and incoherent component is defined to be I1 = 〈〈II∗〉 − 〈I〉〈I∗〉〉
We start with the definition of our integral again, ignoring the exponential phase term for simplicity:

〈I〉 =
∫
S

e−iv̄·r̄1〈e−ivzf(x,y)〉dS (23)

We begin by considering I1 = 〈II∗〉. We neglect the phase term in the Green’s function expansion by
using Eq. (10) instead of Eq. (9), to simplify our calculations.

I1 =
∫
S′

∫
S

e−iv̄·(r̄1−r̄1
′)
〈
e−ivzf(x,y)+ivzf ′(x′,y′)

〉
dSdS′
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Since f and f ′ are Gaussian variables, under a first order approximation (assuming high roughness) we
get: 〈

e−ivzf(x,y)+ivzf ′(x′,y′)
〉

= exp

(
−v2

z〈h〉2 |r̄1 − r̄1
′|2

l2

)
(24)

Therefore, the integral evaluates to:

I1 =
(2a) (2b) πl2

v2
z〈h〉2

exp

(
−
∣∣k̄s − k̄i

∣∣2 l2

4v2
z〈h〉2

)
(25)

Therefore, considering the coherent and incoherent cross section components separately, we get:

σcohvv =
k2

4π
|Avv|2 R2

‖I
2 σcohvh

=
k2

4π
|Avh|2 R2

⊥I2

σcohhv
=

k2

4π
|Ahv|2 R2

‖I
2 σcohhh

=
k2

4π
|Ahh|2 R2

⊥I2

(26)

Incoherent Cross Sections:

σincohvv =
k2

4π
|Avv |2 R2

‖ (2a) (2b)
πl2

v2
z〈h〉2

e
−|k̄s−k̄i|2l2

4v2
z〈h〉2

σincohvh
=

k2

4π
|Avh|2 R2

⊥ (2a) (2b)
πl2

v2
z〈h〉2

e
−|k̄s−k̄i|2l2

4v2
z〈h〉2

σincohhv
=

k2

4π
|Ahv|2 R2

‖ (2a) (2b)
πl2

v2
z〈h〉2

e
−|k̄s−k̄i|2l2

4v2
z〈h〉2

σincohhh
=

k2

4π
|Ahh|2 R2

⊥ (2a) (2b)
πl2

v2
z〈h〉2

e
−|k̄s−k̄i|2l2

4v2
z〈h〉2

(27)

where:
vz = k(cos (θs) + cos (θi))

Now that we have the cross sections, we can find an expression for the incoherent scattered power:[
〈Esv〉2
〈Esh〉2

]
=

1
R2

0

[
σincohvv σincohvh

σincohhv
σincohhh

][ 〈Eiv〉2
〈Eih〉2

]
(28)

We can now find the complete scattered field by summing the coherent and incoherent values. The
Mueller matrix representation, which is a 4 × 4 matrix, is often used for describing the scattered
intensity [2, 4]. Because we expect the correlation between v- and h-polarizations to be small in our
case, the 2 × 2 matrix given in Eq. (28) will be sufficient.

If the plate has an arbitrary orientation, we can find the incident and scattered vectors and angles
via a Euler angle coordinate transformation, using Z-Y ′-Z ′′ format [9].

3. MULTIPLE PLATES

The equations here can easily be used to consider scattering off of multiple plates. By linearity, we
can simply sum together the fields calculated from each plate considered in isolation. We will once
again consider a transmitter and receiver at an arbitrary position relative to a set of plates, each with
arbitrary location and orientation. We then iterate through each plate: for each plate, we will repeat
our Kirchhoff approximation calculation from the previous section. Coordinate transformations will
be used to account for the arbitrary location and orientation of the plate. We will find the scattered
coherent fields EsvEsh and the incoherent scattered fields 〈Esv〉, 〈Esh〉. Once the values of these are
obtained from each plate, the coherent and incoherent fields are all summed together.
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4. RESULTS AND DISCUSSION

4.1. Scattering Amplitudes and Cross Sections

Figures 3–6 show the basic properties of the scattering amplitudes and cross sections. Fig. 3 shows
the scattering amplitudes. The summation of the coherent and incoherent cross sections is visualized
in Fig. 4. In addition, the correlation length and root mean square height are varied in Figs. 5 and 6.
In all three cases, a wave at π

4 incidence to a 10λ × 10λ plate was considered. φi = φs = 0, and the

Figure 3. Scattering amplitudes [f ] versus scattering angle (f = 28 GHz, εr = 7+i0.35, θi = π
4 , φi = 0,

φs = 0, a = b = 5λ, 〈h〉 = 0.1λ, l = 2λ, R0 = 15λ).

Figure 4. Cross sections [σ] versus scattering angle (f = 28 GHz, εr = 7+i0.35, θi = π
4 , φi = 0, φs = 0,

a = b = 5λ, 〈h〉 = 0.1λ, l = 2λ).
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Figure 5. Cross section σvv versus scattering angle, for different values of the rms height (f = 28 GHz,
εr = 7 + i0.35, θi = π

4 , φi = 0, φs = 0, a = b = 5λ, l = 2λ).

Figure 6. Cross section σvv versus scattering angle, for different values of the correlation length
(f = 28 GHz, εr = 7 + i0.35, θi = π

4 , φi = 0, φs = 0, a = b = 5λ, 〈h〉 = 0.1λ).

scattered angle θs was swept from 0 to π
2 .

As observed in Figs. 3 and 4, the scattering amplitudes and cross sections exhibit sinc-like behavior.
The peak is in the specular direction, which is expected for simple plate geometry. Figs. 5 and
6 show the effects of surface roughness on the cross sections. As seen, when surface roughness is
increased, the coherent fields are attenuated. For high roughness, due to most energy being scattered in
random directions, the coherent field is almost entirely absent, leaving only a small diffuse component
representing the incoherent scattered fields.

We also want to analyze how well our simplified Green’s function in Eq. (9) works. Fig. 7
visualizes the effects of the plate area on fvv for different methods of evaluating Green’s function.
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Our representation of the scattering amplitudes fnm uses the “Improved approximation with phase”
evaluation technique, which is a full first-order Taylor expansion, given by Eq. (9). Our formulas for
the cross sections σnm use the “Far-field approximation” model, where we perform a first-order Taylor
expansion but neglect the phase term, using 〈I〉 given by Eq. (19). The “Numerical” model is a full
numerical evaluation of the I term in the scattering amplitude equations, without performing any Taylor
approximations of the Green’s function and using the original definition for G in Eq. (6).

Figure 7. Scattering amplitude fvv (decibel scale) in the specular direction versus plate area (2a)(2b)
λ2

for different Green’s function evaluations, for a flat plate. fvv is evaluated at a distance R0 = 100λ from
the center of the plate. The incident angle is (normal incidence).

Figure 8. Ratio between fvv for our approximations and fvv from numerical evaluation in the specular
direction, versus R0 for a 10λ × 10λ plate. The incident angle is (normal incidence).
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As seen in Fig. 7, for small plate areas, agreement is very close. However, once the area exceeds
about 150λ2, the far-field approximation is no longer a good model. The improved approximation
is in close agreement with the full numerical evaluation. The error for our two Green’s function
approximations is visualized in Fig. 8.

Figure 8 better demonstrates the relative accuracy of the improved approximation for near field
calculations. Very close agreement can be observed at R0 > 2λ for the improved approximation, as
opposed to the far-field approximation which does not converge until R0 > 100λ. For many practical

Figure 9. Comparison of numerical and analytic model. Plotting radiated fields Ez for plate with
a = b = 5λ, sweeping observation angle with normally incident wave.

Figure 10. Comparison of numerical and analytic model. Plotting radiated fields Ez for plate with
a = b = λ, sweeping observation angle with normally incident wave.
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situations, R0 may not be much greater than the size of the plate including the case of low flying drones
over an urban area.

4.2. Comparison with HFSS Data

Next, the equations were compared with numerical data. This is visualized in Figs. 9 and 10. In this
case, a flat plate was used to speed up the numerical computation time. ANSYS HFSS was used for the
numerical data, and the method derived in this paper was implemented in Python. A wave normally
incident on the plate was considered, and the observation angle was modulated. Two different plate
sizes were analyzed: 2λ × 2λ and 10λ × 10λ. Very close agreement between the numerical and analytic
models can be observed in the specular direction; however, as the observation direction approaches the
edge of the plate, agreement starts to break down. The HFSS model includes plate edge effects, which
are neglected in the analytic model. The agreement was relatively close for plates larger than 1λ × 1λ.

4.3. Multiple Plates

Next, multiple plate scattering was considered. Two situations were evaluated. One involved a
transmitter at π

4 incidence on a 3 × 3 grid of uniformly spaced plates, all with the same orientation.

Figure 11. Locations of transmitter, receiver, and plates for data in Fig. 12.

Figure 12. Receiver power versus observation
angle for a 3×3 grid of plates, with a corner at the
origin. The spacing between each plate on the grid
is 12.5λ. Frequency is 28 GHz. Transmitter and
receiver are 100λ from origin, with transmitter at
θi = π

4 , φi = 0. Each plate is 5λ × 5λ, with
〈h〉 = 0.1λ, l = 3λ, and permittivity εr = 7+i0.35.

Figure 13. Receiver power versus observation
angle for 10 randomly placed plates, centered at
the origin. Each plate location is picked from
a uniform random number distribution spanning
−66.67λ ≤ x ≤ 66.67λ, −75λ ≤ y ≤ 75λ, 0 ≤
z ≤ 75

√
2

2 Frequency is 28 GHz. Transmitter and
receiver are 100λ from origin, with transmitter at
θi = π

4 , φi = 0. Each plate is 5λ × 5λ, with
〈h〉 = 0.1λ, l = 3λ, and permittivity εr = 7+i0.35.
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The second case was a transmitter at π
4 incidence on a distribution of 10 plates, each with a random

position and orientation. Each simulation was run with the transmitter and receiver at distances 100λ
from the origin. The setup is visualized in Fig. 11, and the results are visualized in Figs. 12 and 13.

The uniformly spaced plate array displays a clear peak in the specular direction from the array,
with sinc-like falloff in the diffuse directions. The random plate distribution has multiple peaks, and in
addition, one of the regions is inside the shadow of another plate.

5. CONCLUSION

This paper outlines a method for determining the radiation characteristic of a distribution of rough
plates. Due to the use of analytic formulas, the method has a significant computational advantage over
numerical methods. Several approximations were used to derive this formula that must be considered
in practice. These include the neglecting of the edge effect and the modeling of an infinitely thick plate.
In addition, all interactions using the formulas must be in the far field, and the area of a plate must
be larger than 1λ × 1λ. Although the improved approximation of the Green’s function is effective for
the receiver close to the plate, the current formulation still assumes that the incident wave is a plane
wave. The model can be improved using the spherical incident wave. Even given these approximations,
this method is well suited for modeling scattering from geometry that can be represented as a set of
planar structures with roughness. This method can be used to analyze behavior such as interference
from reflections off of surfaces in urban environments, or radiation in areas such as solar panel arrays.
Although this paper deals with a large thick rough plate, we have also studied the scattering from a
thin dielectric plate which can be applied to leaves of deciduous trees [10].
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