Vol. 93
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-14
Optimization Study of Radar Cross Section Reduction by an Inhomogeneous Collisional Magnetized Plasma
By
Progress In Electromagnetics Research C, Vol. 93, 157-172, 2019
Abstract
Recursive convolution FDTD method is employed to study the bistatic radar cross section (RCS) of a conductive plate covered with an inhomogeneous magnetized plasma shroud. The results of numerical simulations reveal that for a plasma of number density 5×1017 m-3 and collision frequency of 1 GHz, RCS reduction (RCSR) is improved i.e., its maximum reduction, bandwidth, and angular width are enhanced, when a perpendicular magnetic field of intensity B=0.25 T is applied. However, increase of the magnetic field to 0.4 T leads to a much lower RCSR specially for the backscattered wave. As the collision frequency is increased to 10 GHz, the RCSR is enhanced both in the presence and absence of the magnetic field. However, with further increase of collision frequency to 60 GHz, the RCSR is significantly reduced and the problem is more severe in the backward direction. The resonant absorption is dominant at low to moderate collision frequencies, for magnetic field intensity above 0.1 T, but becomes almost inefficient when the collision frequency is increased to 60 GHz. The RCSR is considerably weakened when the plasma number density is reduced and the effect is prominent for small angles. A plasma inhomogeneity length scale of 5 cm provides the maximum RCSR in the presence of the magnetic field. With increase of the length scale, the maximum RCSR, the corresponding wave frequency, and bandwidth all are reduced. Therefore, it is conclude that a plasma with number density of 5×1017 m-3, collision frequency of 10 GHz, and length scale of 5 cm, with a perpendicular magnetic field of 0.25 T is the best choice for optimum RCSR of a conductive plate.
Citation
Vahid Foroutan, Mohammad Naghi Azarmanesh, and Gholamreza Foroutan, "Optimization Study of Radar Cross Section Reduction by an Inhomogeneous Collisional Magnetized Plasma," Progress In Electromagnetics Research C, Vol. 93, 157-172, 2019.
doi:10.2528/PIERC19041608
References

1. Singh, H., S. Antony, and R. M. Jha, Plasma-Based Radar Cross Section Reduction, Springer, Singapore 2016.

2. Vidmar, R., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

3. Stalder, K. R., R. J. Vidmar, and D. J. Eckstrom, "Observations of strong microwave absorption in collisional plasmas with gradual density gradients," Journal of Applied Physics, Vol. 72, No. 11, 5089-5094, 1992.
doi:10.1063/1.352038

4. Srivastava, A. K., G. Prasad, P. K. Atrey, and V. Kumar, "Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure," Journal of Applied Physics, Vol. 103, No. 3, 033302, 2008.
doi:10.1063/1.2838199

5. Yin, X., H. Zhang, S.-J. Sun, Z. Zhao, and Y.-L. Hu, "Analysis of propagation and polarization characteristics of electromagnetic waves through nonuniform magnetized plasma slab using propagator matrix method," Progress In Electromagnetics Research, Vol. 137, 159-186, 2013.
doi:10.2528/PIER13010410

6. Hu, B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1136, 1999.
doi:10.1109/27.782293

7. Yee, K., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

8. Huang, S. and F. Li, "Finite-difference time-domain simulation of electromagnetic propagation in magnetized plasma," Computer Physics Communications, Vol. 166, No. 1, 45-52, 2005.
doi:10.1016/j.cpc.2004.10.007

9. Jiang, Z., X. Hu, M. Liu, C. Lan, S. Zhang, Y. He, and Y. Pan, "Attenuation and propagation of a scattered electromagnetic wave in two-dimensional atmospheric pressure plasma," Plasma Sources Science and Technology, Vol. 16, No. 1, 97-103, Dec. 2006.
doi:10.1088/0963-0252/16/1/013

10. Chung, S. M., "FDTD simulations on radar cross sections of metal cone and plasma covered metal cone," Vacuum, Vol. 86, No. 7, 970-984, 2012.
doi:10.1016/j.vacuum.2011.08.016

11. Chaudhury, B. and S. Chaturvedi, "Three-dimensional computation of reduction in radar cross section using plasma shielding," IEEE Transactions on Plasma Science, Vol. 33, No. 6, 2027-2034, 2005.
doi:10.1109/TPS.2005.860122

12. Chaudhury, B. and S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using three-dimensional computations," IEEE Transactions on Plasma Science, Vol. 37, No. 11, 2116-2127, 2009.
doi:10.1109/TPS.2009.2032331

13. Chaudhury, B. and S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods," Physics of Plasmas, Vol. 13, No. 12, 123302, 2006.
doi:10.1063/1.2397582

14. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431

15. Luebbers, R. J. and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1297-1301, 1992.
doi:10.1109/8.202707

16. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

17. Kelley, D. and R. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

18. Liu, S. and S. Zhong, "FDTD study on scattering for conducting target coated with magnetized plasma of time-varying parabolic density distribution," Progress In Electromagnetics Research M, Vol. 22, 13-25, 2012.
doi:10.2528/PIERM11083109

19. Sullivan, D., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

20. Sullivan, D., "Z-transform theory and the FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525

21. Kashiwa, T. and I. Fukai, "A treatment by the FD-TD method of the dispersive characteristics associated with electronic polarization," Microwave and Optical Technology Letters, Vol. 3, No. 6, 203-205, 1990.
doi:10.1002/mop.4650030606

22. Joseph, R., S. Hagness, and A. Taflove, "Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Optics Letters, Vol. 16, No. 18, 1412-1414, 1991.
doi:10.1364/OL.16.001412

23. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 4, 658-665, 1993.
doi:10.1109/22.231661

24. Laroussi, M. and J. Roth, "Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562

25. Petrin, A., "On the transmission of microwaves through plasma layer," IEEE Transactions on Plasma Science, Vol. 28, No. 3, 1000-1008, 2000.
doi:10.1109/27.887768

26. Tang, D., A. Sun, X. Qiu, and P. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 31, No. 3, 405-410, 2003.
doi:10.1109/TPS.2003.811648

27. Foroutan, V., M. N. Azarmanesh, and G. Foroutan, "FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma," Physics of Plasmas, Vol. 25, No. 2, 2018.
doi:10.1063/1.5018314

28. Chung, S. S. M. and Y. C. Chuang, "Simulation on change of generic satellite radar cross section via artificially created plasma sprays," Plasma Sources Science and Technology, Vol. 25, No. 3, 2016.
doi:10.1088/0963-0252/25/3/035004

29. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.

30. Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, IOP, 1995.
doi:10.1887/075030183X

31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.

32. Inan, U. S., "Numerical Electromagnetics: The FDTD Method," Cambridge University Press, 2011.