Vol. 92
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-17
Design of a High-Efficiency Broadband Asymmetric Doherty Power Amplifier
By
Progress In Electromagnetics Research C, Vol. 92, 227-238, 2019
Abstract
This study proposes a broadband asymmetric Doherty power amplifier (A-DPA) with a broadband matching network and an improved power combination network (PCN). A broadband matching network in the form of a low-pass filter is analyzed and applied in this work. With the narrowband characteristic of a 1/4 wavelength transmission line, an improved PCN is also analyzed and applied to decrease the impedance transformation ratio of the 1/4 wavelength transmission line and then extend the working bandwidth of the DPA. In the design process, GaN HEMTs from Cree are selected to be the main and auxiliary power amplifier transistors, and the ADS software is used to complete the entire design process. In the working frequency band of 3.3-3.6 GHz, simulated results show that the gain is approximately 13 dB when the output power is lower than 40 dBm and that the power-added efficiency (PAE) is 39%-51% within the 9 dB power back-off (PBO) region. Measured results indicate that the proposed A-DPA exhibits a 36%-45% PAE within the 9 dB PBO region. The saturated PAE is between 58% and 62%, and the saturated output power is approximately 42 dBm.
Citation
Bin Wang, Jiang Teng, Debao Zhang, and Dong Su, "Design of a High-Efficiency Broadband Asymmetric Doherty Power Amplifier," Progress In Electromagnetics Research C, Vol. 92, 227-238, 2019.
doi:10.2528/PIERC19022802
References

1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of radio engineers, Vol. 24, No. 9, 1163-1182, 1936.

2. Ahn, G. H., M. S. Kim, H. C. Park, and Y. G. Yang, "Design of a high efficiency and high-power inverted Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 6, 1105-1111, 2007.
doi:10.1109/TMTT.2007.896807

3. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "Highly linear power tracking Doherty amplifier for WCDMA repeater applications," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 485-487, 2008.
doi:10.1109/LMWC.2008.925113

4. Liu, Q.-A., S.-B. He, and W.-M. Shi, "Design of 3.5GHz linear high efficiency Doherty power amplifier with pre-matching," 2015 Asia Pacific Microwave Conference (APMC), 1-3, Nan Jing, 2015.

5. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, 2016.
doi:10.1109/TMTT.2016.2574861

6. Qi, T. and S. He, "Design of high efficiency Doherty power amplifier applying power controlling technology with 15 dB output power back-off," 2017 47th European Microwave Conference (EuMC), 576-579, Nuremberg, 2017.
doi:10.23919/EuMC.2017.8230913

7. Zhou, X., S. Zheng, W. Chan, X. Fang, and D. Ho, "Post matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1951-1963, 2018.
doi:10.1109/TMTT.2017.2784811

8. Son, J., I. Kim, J. Moon, J. Lee, and B. Kim, "A highly efficient asymmetric Doherty power amplifier with a new output combining circuit," 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), 1-4, TelAviv, 2011.

9. Jang, D., J. Choi, and J. Kim, "Asymmetric Doherty power amplifier with optimized characteristics in output power back-off range between 6 dB and 10 dB," The 40th European Microwave Conference, 870-873, Paris, 2010.

10. Iwamoto, M., A. Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2472-2479, 2001.
doi:10.1109/22.971638

11. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, 2009.
doi:10.1002/mmce.20350

12. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part II: validation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 307-316, 2009.
doi:10.1002/mmce.20351

13. Parkvall, S., A. Furuskar, and E. Dahlman, "Evolution of LTE toward IMT-advanced," IEEE Transactions on Communication Magazine, Vol. 49, No. 2, 84-91, 2011.
doi:10.1109/MCOM.2011.5706315

14. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, 2012.
doi:10.1109/TMTT.2011.2175237

15. Kwon, J., M. Seo, H. Lee, J. Gu, J. Ham, K. C. Hwang, and K. Lee, "Broadband Doherty power amplifier based on asymmetric load matching networks," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 6, 533-537, 2015.
doi:10.1109/TCSII.2015.2407197

16. Pang, J., S. He, Z. Dai, C. Huang, J. Peng, and F. You, "Design of a post-matching asymmetric Doherty power amplifier for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 52-54, 2016.
doi:10.1109/LMWC.2015.2505651

17. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, 2015.
doi:10.1109/TMTT.2015.2495201

18. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3–3.6GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, 2012.
doi:10.1109/TMTT.2012.2201745

19. Sun, Y. and X. Zhu, "Broadband continuous class-F−1 amplifier with modified harmonic-controlled network for advanced long term evolution application," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 250-252, 2015.
doi:10.1109/LMWC.2015.2400941

20. Aridas, N. K., B. S. Yarman, and P. Chacko, "Wideband power amplifier for two-way radio applications via real-frequency technique," Electronics Letters, Vol. 50, No. 23, 1762-1764, 2014.
doi:10.1049/el.2014.2972

21. Pozar, D. M., Microwave Engineering, 3rd Edition, Publishing House of Electronics Industry, 2015.

22. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3162-3173, 2011.
doi:10.1109/TMTT.2011.2169080

23. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, 2013.
doi:10.1109/LMWC.2012.2236308

24. Matthaei, G. L., "Tables of Chebyshev impedance transformation networks of low-pass filter form," Proceedings of the IEEE, Vol. 52, No. 8, 939-963, 1964.
doi:10.1109/PROC.1964.3185

25. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 11, 775-777, 2014.
doi:10.1109/LMWC.2014.2345193

26. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, 2015.
doi:10.1109/TMTT.2014.2377725

27. Chen, C., P. Qiao, G. Wang, Z. Cheng, and Q. Xue, "A broadband three-device Doherty power amplifier based on a modified load modulation network," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, San Francisco, CA, 2016.

28. Huang, C., S. He, and F. You, "Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations," IEEE Access, Vol. 6, 2531-2540, 2018.
doi:10.1109/ACCESS.2017.2784094

29. Khan, M. S., H. Zhang, X. Wang, R. Ullah, I. Ahmad, S. Shahzad, Q. A. Arain, and M. Z. Tunio, "A novel two-stage broadband Doherty power amplifier for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 40-42, 2018.
doi:10.1109/LMWC.2017.2775157