Vol. 92
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-13
Miniaturized Multistubs Loaded Rectangular Monopole Antenna for Multiband Applications Based on Theory of Characteristics Modes
By
Progress In Electromagnetics Research C, Vol. 92, 177-189, 2019
Abstract
A miniaturized rectangular monopole antenna (RMA) integrated with a T-shaped stub, inverted long and short L-shaped stub resonators based on application of the theory of characteristic modes (CMs) is investigated for multiband operation. CMs of embedded multistubs resonators on the RMA are examined and perceived that the entire structure is able to excite magnetic and electric CMs, in which three valuable CMs at 2.69/3.68/5.35 GHz are attained to cover WiMAX and WLAN bands. Based on CM analysis, the design formulation of multistubs resonators loaded antenna is presented. The proposed multiband antenna has been fabricated, tested, and experimentally characterized. The measured fractional bandwidths (FBWs) are 7.03% (180 MHz, 2.47-2.65 GHz), 10.43% (360 MHz, 3.27-3.63 GHz), and 11.42% (630 MHz, 5.20-5.83 GHz). The antenna exhibits isolated multiple frequency bands, stable monopole-like radiation patterns, and flat realized gains over the operating resonance bands while maintaining the small antenna size.
Citation
Ashok Kumar, Jitendra Kumar Deegwal, and Mahendra Mohan Sharma, "Miniaturized Multistubs Loaded Rectangular Monopole Antenna for Multiband Applications Based on Theory of Characteristics Modes," Progress In Electromagnetics Research C, Vol. 92, 177-189, 2019.
doi:10.2528/PIERC19022009
References

1. Garbacz, R. J., "Modal expansions for resonance scattering phenomena," Proc. IEEE, Vol. 53, No. 8, 856-864, 1965.
doi:10.1109/PROC.1965.4064

2. Harrington, R. F. and J. R. Mautz, "The theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999

3. Harrington, R. F. and J. R. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 629-639, 1971.
doi:10.1109/TAP.1971.1139990

4. Chen, Y. and C.-F. Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey, 2015.
doi:10.1002/9781119038900

5. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas Propag. Mag., Vol. 49, No. 5, 52-68, 2007.
doi:10.1109/MAP.2007.4395295

6. Yang, X., Y. Liu, and S.-X. Gong, "Design of a wideband omnidirectional antenna with characteristic mode analysis," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 993-997, 2018.
doi:10.1109/LAWP.2018.2828883

7. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 420-425, 2018.
doi:10.1109/TAP.2017.2768083

8. Zhang, Q. and Y. Gao, "Compact low-profile UWB antenna with characteristic mode analysis for UHF TV white space devices," IET Microw. Antennas Propag., Vol. 11, No. 11, 1629-1635, 2017.
doi:10.1049/iet-map.2016.0993

9. Wu, W. and Y. P. Zhang, "Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes," IEEE Trans. Antennas Propag. Mag., Vol. 52, No. 6, 67-77, 2010.
doi:10.1109/MAP.2010.5723225

10. Tran, H. H., N. Nguyen-Trong, and A. M. Abbosh, "Simple design procedure of a broadband circularly polarized slot monopole antenna assisted by characteristic mode analysis," IEEE Access, Vol. 6, 78386-78396, 2018.
doi:10.1109/ACCESS.2018.2885015

11. Ghalib, A. and M. S. Sharawi, "New antenna mode generation based on theory of characteristic modes," Int. J. RF Microw. Comput. Aided Eng., e21686, 2018, doi: 10.1002/mmce.21686.
doi:10.1002/mmce.21686

12. Lu, W.-J. and L. Zhu, "Wideband stub-loaded slotline antennas under multi-mode resonance operation," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 818-823, 2015.
doi:10.1109/TAP.2014.2379921

13. Zhang, X. Q., Y. C. Jiao, and W. H. Wang, "Compact wide tri-band slot antenna for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 2, 64-65, 2012.
doi:10.1049/el.2011.3376

14. Rajabloo, H., V. A. Kooshki, and H. Oraizi, "Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application," Int. J. Electron. Commun., Vol. 73, 144-149, 2017.
doi:10.1016/j.aeue.2016.12.027

15. Li, W.-M., B. Liu, and H.-Y. Zhao, "Parallel rectangular open slots structure in multiband printed antenna design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1161-1164, 2015.
doi:10.1109/LAWP.2015.2393632

16. Xu, Y., C. Zhang, Y.-Z. Yin, and Z. Yang, "Compact triple-band monopole antenna with inverted- L slots and SRR for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 55, 1-6, 2015.
doi:10.2528/PIERL15070904

17. Liu, G., Y. Liu, and S. Gong, "Compact tri-band wide-slot monopole antenna with dual-ring resonator for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 58, No. 5, 1097-1101, 2016.
doi:10.1002/mop.29759

18. Liu, H.-W., F. Qin, J.-H. Lei, P. Wen, B.-P. Ren, and X. Xiao, "Dual-band microstrip-fed bow-tie antenna for GPS and WLAN application," Microw. Opt. Technol. Lett., Vol. 56, No. 9, 2088-2091, 2014.
doi:10.1002/mop.28538

19. Lu, J.-H. and W.-C. Chou, "Planar dual U-shaped monopole antenna with multiband operation for IEEE 802.16e," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1006-1009, 2010.
doi:10.1109/LAWP.2010.2087003

20. Yang, X., Y.-Z. Yin, W. Hu, and K. Song, "Dual-band planar monopole antenna loaded with pair of edge resonators," Electron. Lett., Vol. 46, No. 21, 1419-1421, 2010.
doi:10.1049/el.2010.8349

21. He, K., R.-X. Wang, Y.-F. Wang, and B.-H. Sun, "Compact tri-band claw-shaped monopole antenna for WLAN/WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5–6, 869-877, 2011.
doi:10.1163/156939311794827104

22. Ellis, S. M., Z. Zhao, J. Wu, Z.-P. Nie, and Q. H. Liu, "A new compact microstrip-fed monopole antenna for triple band WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 48, 129-135, 2014.
doi:10.2528/PIERL14061004

23. Naik, K. K., "Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications," Int. J. Electron. Commun., Vol. 93, 103-108, 2018.
doi:10.1016/j.aeue.2018.06.008

24. Xu, Y., Y.-C. Jiao, and Y.-C. Luan, "Compact CPW-fed printed monopole antenna with tripleband characteristics for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 24, 1519-1520, 2012.
doi:10.1049/el.2012.3255

25. Li, L., X. Zhang, X. Yin, and L. Zhou, "A compact triple-band printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1853-1855, 2016.
doi:10.1109/LAWP.2016.2539358

26. Kumar, A., D. Jhanwar, and M. M. Sharma, "A compact printed multistubs loaded resonator rectangular monopole antenna design for multiband wireless systems," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, No. 9, e21147, 2017.
doi:10.1002/mmce.21147

27. Liu, H. W., H. Jiang, X. Guan, J. H. Lei, and S. Li, "Single-feed slotted bowtie antenna for triband applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1658-1661, 2013.
doi:10.1109/LAWP.2013.2294751

28. Hu, W., Y.-Z. Yin, X. Yang, and P. Fei, "Compact multiresonator-loaded planar antenna for multiband operation," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2838-2841, 2013.
doi:10.1109/TAP.2013.2242819

29. Mao, C.-X., S. Gao, Y. Wang, and B. Sanz-Izquierdo, "A novel multiband directional antenna for wireless communications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1217-1220, 2017.
doi:10.1109/LAWP.2016.2628715

30. Weng, W.-C. and C.-L. Hung, "An H-fractal antenna for multiband applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1705-1708, 2014.
doi:10.1109/LAWP.2014.2351618

31. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969

32. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 850-854, 2017.
doi:10.1109/TAP.2016.2632620

33. Mark, R., N. Mishra, K. Mandal, P. P. Sarkar, and S. Das, "Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications," Int. J. Electron. Commun., Vol. 94, 42-50, 2018.
doi:10.1016/j.aeue.2018.06.039

34. Kumar, A. and M. M. Sharma, "Compact triple-band stubs-loaded rectangular monopole antenna for WiMAX/WLAN applications," Optical and Wireless Technologies, Vol. 472, 429-435, Lecture Notes in Electrical Engineering, 2018.