Vol. 92
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-07
An RF Transceiver for Wireless Chip-to-Chip Communication Using a Cross-Coupled Oscillator
By
Progress In Electromagnetics Research C, Vol. 92, 165-175, 2019
Abstract
In this study, we propose a transceiver architecture for wireless chip-to-chip communication using on/off keying (OOK) modulation. The proposed transceiver is composed of an oscillator, coils, an envelope detector, and a Schmitt trigger. Given that the oscillator itself acts as an OOK modulator, the transmitter is simplified. Additionally, because the oscillating signal is coupled between the transmitter and receiver coils, the reliability of the chip-to-chip communication is improved compared to a pulse-type transceiver. To verify the feasibility of the proposed transceiver, we design a transceiver using a 180 nm CMOS process. For a design with a 1.5 GHz oscillation frequency and 1 MHz digital input signal, we verify that the proposed transceiver successfully recovers the original digital signal.
Citation
Hooyoung Shin, Milim Lee, Changhyun Lee, and Changkun Park, "An RF Transceiver for Wireless Chip-to-Chip Communication Using a Cross-Coupled Oscillator," Progress In Electromagnetics Research C, Vol. 92, 165-175, 2019.
doi:10.2528/PIERC19020902
References

1. Basith, I. I. and R. Rashidzadeh, "Contactless test access mechanism for TSV-based 3-D ICs utilizing capacitive coupling," IEEE Trans. Instrum. Meas., Vol. 65, 88-95, 2016.
doi:10.1109/TIM.2015.2477240

2. Stucchi, M., D. Velenis, and G. Katti, "Capacitance measurements of two-dimensional and threedimensional IC interconnect structures by quasi-static C-V technique," IEEE Trans. Instrum. Meas., Vol. 61, 1979-1990, 2016.
doi:10.1109/TIM.2011.2179829

3. Fu, K., W.-S. Zhao, G. Wang, and M. Swaminathan, "A passive equalizer design for shielded differential through-silicon vias in 3-D IC," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 768-770, 2018.
doi:10.1109/LMWC.2018.2854552

4. Kim, K., J. Ahn, and S. Ahn, "Detection of the interface-trap charge density and lateral nonuniformity of through-silicon vias," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 422-424, 2018.
doi:10.1109/LMWC.2018.2822731

5. Liu, X., Z. Zhu, Y. Yang, R. Ding, and Y. Li, "Electrical modeling and analysis of differential dielectric-cavity through-silicon via array," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 618-620, 2017.
doi:10.1109/LMWC.2017.2711563

6. Lee, W.-C., B.-W. Min, J. C. Kim, and J.-M. Yook, "Silicon-core coaxial through silicon via for low-loss RF si-interposer," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 428-430, 2017.
doi:10.1109/LMWC.2017.2690826

7. Yook, J.-M., D. Kim, and J. Kim, "Compact and low-profile GaN hybrid-IC based on TSV Siinterposer technology," Microw. Opt. Technol. Lett., Vol. 59, 1087-1092, 2017.
doi:10.1002/mop.30469

8. Lee, C., J. Park, J. Yoo, H. Cho, J. Choi, J. Cho, and C. Park, "Transceiver with inductive coupling for wireless chip-to-chip communication using a 50-nm digital CMOS process," Microelectron. J., Vol. 44, 852-859, 2013.
doi:10.1016/j.mejo.2013.07.006

9. Lee, M., C. Lee, and C. Park, "Transceiver for wireless power transfer using a cross-coupled oscillator for a wireless on-wafer test," IEEE Trans. Instrum. Meas., Vol. 66, 2097-2105, 2017.
doi:10.1109/TIM.2017.2677658

10. Lee, C., J. Park, and C. Park, "Zigzag-shaped coil array structure for wireless chip-to-chip communication applications," IEEE Trans. Electron Devices, Vol. 61, 3245-3251, 2014.
doi:10.1109/TED.2014.2333517

11. Kim, G.-S., M. Takamiya, and T. Sakurai, "A capacitive coupling interface with high sensitivity for wireless wafer testing," Proc. IEEE Int. Conf. 3D Syst. Integr., 1-5, Sep. 2009.

12. Yoshida, Y., K. Nose, Y. Nakagawa, K. Noguchi, Y. Morita, M. Tago, M. Mizuno, and T. Kuroda, "An inductive-coupling DC voltage transceiver for highly parallel wafer-level testing," IEEE J. Solid-State Circuits, Vol. 45, 2057-2065, 2010.
doi:10.1109/JSSC.2010.2061653

13. Tomita, K., R. Shinoda, T. Kuroda, and H. Ishikuro, "1-W 3.3–16.3-V boosting wireless power transfer circuits with vector summing power controller," IEEE J. Solid-State Circuits, Vol. 47, 2576-2085, 2012.
doi:10.1109/JSSC.2012.2211698

14. Radecki, A., H. Chung, Y. Yoshida, N. Miura, T. Shidei, H. Ishikuro, and T. Kuroda, "6W/25mm2 inductive power transfer for non-contact wafer-level testing," Proc. IEEE Int. Solid-State Circuits Conf., 230-232, Feb. 2011.

15. Lee, C., J. Park, J. Yoo, and C. Park, "Study of the coil structure for wireless chip-to-chip communication applications," Progress In Electromagnetics Research Letters, Vol. 38, 127-136, 2013.
doi:10.2528/PIERL13022002

16. Lee, M., S. Cho, and C. Park, "30-GHz CMOS voltage-controlled oscillator using drain-gate coupled transformer to minimize the influences of parasitic components," Microw. Opt. Technol. Lett., Vol. 57, 1025-1027, 2015.
doi:10.1002/mop.29009

17. Shin, H., M. Lee, C. Lee, and C. Par, "A CMOS voltage-controlled oscillator using a cascode structure," Microw. Opt. Technol. Lett., Vol. 58, 1560-1563, 2016.
doi:10.1002/mop.29860