Vol. 91
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-20
Electronically Switchable Ultra-Wide Band /Dual-Band Bandpass Filter Using Defected Ground Structures
By
Progress In Electromagnetics Research C, Vol. 91, 83-96, 2019
Abstract
In this paper, an electronically switchable ultra-wideband (UWB)/dual-band bandpass filter using defected ground structures (DGSs) is proposed. The proposed filter consists of meandered inter-digital coupled line sections, stepped impedance open stubs, coupled lines, and rectangular DGSs to realize high performance in the operation band with a compact size of 12.5 mm × 10 mm. The proposed filter is designed on an RT/Teflon substrate (εr = 2.2, h = 0.7874 mm). The main advantage of the proposed filter is the reconfiguration of ultra-wide bandpass filter to dual-band bandpass filter. UWB has passband from 3.6 GHz to 10.6 GHz with upper wide stopband attenuation better than 20 dB up to 18 GHz. The dual passbands extend from 3.8 GHz to 5 GHz and from 9.5 GHz to 10.8 GHz. This filter is able to provide interference immunity from unwanted radio signals, such as wireless local area networks (WLAN), worldwide interoperability for microwave access (WIMAX) that cohabit within the UWB spectrum, and X (Military) band of satellite from 7 GHz to 8 GHz. The state of filter can be changed by using switching matrix equipment (mini circuit, replacement of PIN diodes). To validate the design theory, an electronically switchable UWB/dual-band bandpass filter using DGSs is designed, fabricated, and measured. Good agreement is found between simulated and measured results.
Citation
Eman Gamal Ouf, Esmat A. F. Abdallah, Ashraf Shouki Seliem Mohra, and Hadia El-Hennawy, "Electronically Switchable Ultra-Wide Band /Dual-Band Bandpass Filter Using Defected Ground Structures," Progress In Electromagnetics Research C, Vol. 91, 83-96, 2019.
doi:10.2528/PIERC19010702
References

1. Federal Communications Commission (FCC), Revision of Part 15 of the Commissions Rules Regarding "Ultra-wideband transmission systems,", First Report and order, FCC 2–48, Apr. 22, 2002.
doi:10.1109/TMTT.2005.845765

2. Kuo, J.-T., T.-H. Yeh, and C.-C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1331-1336, Apr. 2005.
doi:10.1109/LMWC.2006.890463

3. Weng, M.-H., H.-W. Wu, and Y.-K. Su, "Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs," IEEE Microwave Wireless Component Letters, Vol. 17, No. 3, 187-189, Mar. 2007.
doi:10.1109/TMTT.2004.825680

4. Tsai, L.-C. and C.-W. Huse, "Dual-band bandpass filters using equal length coupled-serial-shunted lines and Z-transform techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/LMWC.2006.869868

5. Guan, X., Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, "Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 3, 110-112, Mar. 2006.
doi:10.1109/TMTT.2007.895410

6. Lee, H.-M. and C.-M. Tsai, "Dual-band filter design with flexible passband frequency and bandwidth selections," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 1002-1009, May 2007.
doi:10.1109/22.899965

7. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.

8. Shan, Q., C. Chen, and W. Wu, "Design of an UWB bandpass filter with a notched band using asymmetric loading stubs," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, China, Jun. 5–8, 2016.

9. Pozar, D. M., Microwave Engineering, 4th Edition, John Wiley and Sons, Inc., 2012.
doi:10.1002/9780470937297

10. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2011.
doi:10.2528/PIERB08031401

11. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.

12. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House, Norwood, USA, 2003.
doi:10.1109/LMWC.2007.897788

13. Wong, S. W. and L. Zhu, "EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper stop band performance," IEEE Microwave Wireless Component Letters, Vol. 17, No. 6, 421-423, 2007.
doi:10.5815/ijwmt.2018.03.06

14. Senguptaa, A., S. R. Choudhuryb, and S. Dasc, "Design of an UWB bandpass filter using dualMMR with highly attenuated upper stopband using DGS," I. J. Wireless and Microwave Technologies, Vol. 3, 58-69, 2018.

15. Zheng, X., Y. Pan, and T. Jiang, "UWB bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure," Micromachines, Vol. 280, No. 9, 1-12, 2018.

16., USB RF-SPDT Switch Matrix, Mini Circuits, https://www.minicircuits.com/pdfs/USB-4SPDTA18. pdf.