Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-01
A CMOS Power Amplifier Using a Balun Embedded Driver Stage for IEEE 802.11N WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 90, 169-181, 2019
Abstract
In this work, we propose a balun embedded driver stage to enhance the bandwidth and minimize the chip size of a differential CMOS power amplifier. By removing the passive input transformer, the bandwidth and chip size are improved. The proposed driver stage acts as an input balun as well as the driver stage for the power stage. The proposed driver is composed of a cascade connected PMOS, an inductor, and NMOS to generate the differential output signal. For the function of the input balun, the gate of the PMOS is connected to the drain of the NMOS. To verify the feasibility of the proposed balun embedded driver stage, we design a differential CMOS power amplifier for 5-GHz IEEE 802.11n WLAN applications. The designed power amplifier is fabricated using the 180-nm SOI RF CMOS process. The measured 3-dB bandwidth is approximately 2.5 GHz. The chip size of the fully integrated power amplifier, including input and output matching networks and test pads, is 0.885 mm2. The measured maximum output power is 20.18 dBm with a PAE of 10.16%.
Citation
Minoh Son, Jinho Yoo, Changhyun Lee, and Changkun Park, "A CMOS Power Amplifier Using a Balun Embedded Driver Stage for IEEE 802.11N WLAN Applications," Progress In Electromagnetics Research C, Vol. 90, 169-181, 2019.
doi:10.2528/PIERC18120705
References

1. Moon, K., Y. Cho, J. Kim, S. Jin, S. Kim, and B. Kim, "An HBT saturated power amplifier with minimized knee effect for envelope tracking operation," IEEE Microw. Wireless Compon. Lett., Vol. 25, 544-546, 2015.
doi:10.1109/LMWC.2015.2440771

2. Lin, L., L. Zhou, R.Wang, L. Tong, and W.-Y. Lin, "Electrothermal effects on performance of GaAs HBT power amplifier during power versus time (PVT) variation at GSM/DCS bands," IEEE Trans. Microw. Theory Techn., Vol. 63, 1951-1963, 2015.
doi:10.1109/TMTT.2015.2424695

3. Griffith, Z., M. Urteaga, P. Rowell, and R. Pierson, "A 6–10mW power amplifier at 290–307.5 GHz in 250 nm InP HBT," IEEE Microw. Wireless Compon. Lett., Vol. 25, 597-599, 2015.
doi:10.1109/LMWC.2015.2451360

4. Yoon, S., I. Lee, M. Urteaga, M. Kim, and S. Jeon, "A fully-integrated 40–222 GHz InP HBT distributed amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 24, 460-462, 2014.
doi:10.1109/LMWC.2014.2316223

5. Giammello, V., E. Ragonese, and G. Palmisano, "A transformer-coupling current-reuse SiGe HBT power amplifier for 77-GHz automotive radar," IEEE Trans. Microw. Theory Techn., Vol. 60, 1676-1683, 2012.
doi:10.1109/TMTT.2012.2189243

6. Karthaus, U., D. Sukumaran, S. Tontisirin, S. Ahles, A. Elmaghraby, L. Schmidt, and H. Wagner, "Fully integrated 39 dBm, 3-stage doherty PA MMIC in a low-voltage GaAs HBT technology," IEEE Microw. Wireless Compon. Lett., Vol. 22, 94-96, 2012.
doi:10.1109/LMWC.2011.2181829

7. Lin, J., C. C. Boon, X. Yi, and G. Feng, "A 50–59 GHz CMOS injection locking power amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 25, 52-54, 2015.
doi:10.1109/LMWC.2014.2369960

8. Tasi, K.-C. and P. R. Gray, "A 1.9-GHz, 1-W CMOS Class-E power amplifier for wireless communications," IEEE J. Solid-State Circuits, Vol. 34, 962-970, 1999.
doi:10.1109/4.772411

9. Han, J.-A., Z.-H. Kong, K. Ma, and K. S. Yeo, "A 26.8 dB gain 19.7 dBm CMOS power amplifier using 4-way hybrid coupling combiner," IEEE Microw. Wireless Compon. Lett., Vol. 25, 43-45, 2015.
doi:10.1109/LMWC.2014.2365993

10. Kaymaksut, E., D. Zhao, and P. Reynaert, "Transformer-based doherty power amplifiers for mmwave applications in 40-nm CMOS," IEEE Trans. Microw. Theory Techn., Vol. 63, 1186-1192, 2015.
doi:10.1109/TMTT.2015.2409255

11. Ryu, N., B. Park, and Y. Jeong, "A fully integrated high efficiency RF power amplifier for WLAN application in 40 nm standard CMOS process," IEEE Microw. Wireless Compon. Lett., Vol. 25, 382-384, 2015.
doi:10.1109/LMWC.2015.2421351

12. Godoy, P. A., S. W. Chung, T. W. Barton, D. J. Perreault, and J. L. Dawson, "A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS," IEEE J. Solid-State Circuits, Vol. 47, 2372-2384, 2012.
doi:10.1109/JSSC.2012.2202810

13. Yoon, Y., J. Kim, H. Kim, K. H. An, O. Lee, Ch.-H. Lee, and J. S. Kenney, "A dual-mode CMOS RF power amplifier with integrated tunable matching network," IEEE Trans. Microw. Theory Techn., Vol. 60, 77-88, 2012.
doi:10.1109/TMTT.2011.2175235

14. Ham, J., J. Bae, M. Seo, H. Lee, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Dual-mode supply modulator for CMOS envelope tracking power amplifier integrated circuit," Microw. Opt. Technol. Lett., Vol. 57, 1338-1343, 2015.
doi:10.1002/mop.29107

15. Kim, H., J. Bae, J. Ham, J. Gu, M. Seo, K. C. Hwang, K.-Y. Lee, C.-S. Park, and Y. Yang, "Efficiency enhanced CMOS digitally controlled dynamic bias switching power amplifier for LTE," Microw. Opt. Technol. Lett., Vol. 57, 2315-2321, 2015.
doi:10.1002/mop.29330

16. Nakatani, T., D. F. Kimball, L. E. Larson, and P. M. Asbeck, "0.7–1.8 GHz multiband digital polar transmitter using watt-class current-mode class-D CMOS power amplifier and digital envelope modulation technique for reduced spurious emissions," Int. J. Microw. Wirel. Technol., Vol. 5, 271-284, 2013.
doi:10.1017/S175907871300041X

17. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE J. Solid-State Circuits, Vol. 37, 371-383, 2002.
doi:10.1109/4.987090

18. Yang, H.-S., J.-H. Chen, and Y.-J. E. Chen, "A 1.2-V 90-nm fully integrated compact CMOS linear power amplifier using the coupled L-shape concentric vortical transformer," IEEE Trans. Microw. Theory Techn., Vol. 62, 2689-2699, 2014.
doi:10.1109/TMTT.2014.2352602

19. Son, M., J. Yoo, and C. Park, "A linear CMOS power amplifier using class-D to reduce the number of required inductors," Microw. Opt. Technol. Lett., Vol. 58, 565-569, 2016.
doi:10.1002/mop.29610

20. Jeong, H., G. Ko, H. Shin, I. Kang, and C. Park, "A CMOS power amplifier using split input and output transformers to minimize its chip area," Microw. Opt. Technol. Lett., Vol. 58, 1443-1446, 2016.
doi:10.1002/mop.29829

21. Lee, C. and C. Park, "Design methodology for a switching-mode RF CMOS power amplifier with an output transformer," Int. J. Microw. Wirel. Technol., Vol. 8, 471-477, 2016.
doi:10.1017/S1759078715001415

22. Francois, B. and P. Reynaert, "A fully integrated transformer-coupled power detector with 5GHz RF PA for WLAN 802.11ac in 40 nm CMOS," IEEE J. Solid-State Circuits, Vol. 50, 1237-1250, 2015.
doi:10.1109/JSSC.2015.2399458

23. Kumar, R., T. Krishnaswamy, G. Rajendran, D. Sahu, A. Sivadas, M. Nandigam, S. Ganeshan, S. Datla, A. Kudari, H. Bhasin, M. Agrawal, S. Narayan, Y. Dharwekar, R. Garg, V. Edayath, T. Suseela, V. Jayaram, S. Ram, V. Murugan, A. Kumar, S. Mukherjee, N. Dixit, E. Nussbaum, J. Dror, N. Ginzburg, A. EvenChen, A. Maruani, S. Sankaran, V. Srinivasan, and V. Rentala, "A fully integrated 2 × 2 b/g and 1 × 2 a-band MIMO WLAN SoC in 45 nm CMOS for multi-radio IC," IEEE Int. Solid-State Circuits Conf. (ISSCC), 328-329, Feb. 2013.

24. Son, M., J. Yoo, I. Kang, C. Lee, J. Kim, H. J. Park, Y.-B. Park, and C. Park, "RF CMOS power amplifier using a split inter-stage inductor for IEEE 802.11n applications," Int. J. Microw. Wirel. Technol., Vol. 9, 719-727, 2017.
doi:10.1017/S1759078716000878