Vol. 89
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-01-04
Optimization and Analysis of 24/16/8 Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research C, Vol. 89, 191-205, 2019
Abstract
In order to solve the strong coupling problem of a traditional bearingless switched reluctance motor (BSRM), this paper proposes a new type of hybrid excitation double stator BSRM (HEDSBSRM). The new motor can realize self-decoupling between torque and suspension force. In addition, the two degrees of freedom suspension force can also be decoupled. First, the topology of themotoris proposed, and the generation mechanism of suspension force and torque are expounded.Second, the torque winding structure is optimized.Themulti-objective sensitivity optimization design method is used to screen out the key structural parameters that have the greatest influence on the average suspension force, average torque, and core loss. Then, the optimal structural parameters are obtained by the control variable method. Finally, based on the optimized motor, the finite element method(FEM) is used to analyze the electromagnetic characteristics including the suspension force, torque, and coupling of the motor. The simulation results verify the correctness of the proposed design method and analysis of motor performance.
Citation
Qianwen Xiang, and Liyun Feng, "Optimization and Analysis of 24/16/8 Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research C, Vol. 89, 191-205, 2019.
doi:10.2528/PIERC18112103
References

1. Morrison, C. R., M. W. Siebert, and E. J. Ho, "Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor," IEEE Trans. Magn., Vol. 44, No. 12, 4626-4638, Dec. 2008.
doi:10.1109/TMAG.2008.2002891

2. Sun, X., Y. Chen, S. Wang, G. Lei, Z. Yang, and S. Han, "Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model," IEEE/ASME Trans. Mech., Vol. 23, No. 2, 747-757, Feb. 2018.
doi:10.1109/TMECH.2018.2803148

3. Xue, X. D., K. W. E. Cheng, T. W. Ng, and N. C. Cheung, "Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles," IEEE Trans. Ind. Electron., Vol. 57, No. 9, 2980-2987, Sep. 2010.
doi:10.1109/TIE.2010.2051390

4. Torkaman, H., E. Afjei, and M. S. Toulabi, "New double-layer-per-phase isolated switched reluctance motor: Concept, numerical analysis, and experimental confirmation," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 830-838, Feb. 2012.
doi:10.1109/TIE.2011.2158049

5. Sun, X., L. Chen, H. Jiang, Z. Yang, J. Chen, and W. Zhang, "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 3479-3488, Jun. 2016.
doi:10.1109/TIE.2016.2530040

6. Asama, J., Y. Hamasaki, T. Oiwa, and A. Chiba, "Proposal and analysis of a novel single-drive bearingless motor," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 129-138, Jan. 2013.
doi:10.1109/TIE.2012.2183840

7. Sun, X., Z. Shi, L. Chen, and Z. Yang, "Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method," IEEE Trans. Energy Convers., Vol. 31, No. 4, 1539-1548, Dec. 2016.
doi:10.1109/TEC.2016.2591925

8. Matsuzaki, T., M. Takemoto, S. Ogasawara, S. Ota, K. Oi, and D. Matsuhashi, "Operational characteristics of an IPM-type bearingless motor with 2-pole motor windings and 4-pole suspension windings," IEEE Trans. Ind. Appl., Vol. 53, No. 6, 5383-5392, Nov.–Dec. 2017.
doi:10.1109/TIA.2017.2746668

9. Sun, X., L. Chen, and Z. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 5528-5538, Dec. 2013.
doi:10.1109/TIE.2012.2232253

10. Sun, X., L. Chen, Z. Yang, and H. Zhu, "Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer," IEEE/ASME Trans. Mech., Vol. 18, No. 4, 1357-1366, Aug. 2013.
doi:10.1109/TMECH.2012.2202123

11. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Trans. Energy Convers., Vol. 32, No. 4, 1533-1543, Dec. 2017.
doi:10.1109/TEC.2017.2719160

12. Wang, H., J. Bao, B. Xue, and J. Liu, "Control of suspending force in novel permanent-magnet-biased bearingless switched reluctance motor," IEEE Trans. Ind. Electron., Vol. 62, No. 7, 4298-4306, Jul. 2015.
doi:10.1109/TIE.2014.2387799

13. Cao, X., Z. Deng, G. Yang, and X. Wang, "Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations," IEEE Trans. Power Electron., Vol. 24, No. 5, 1376-1385, 2009.
doi:10.1109/TPEL.2009.2016568

14. Liu, J., H. Wang, J. Bao, G. Zhou, and F. Zhang, "A novel permanent magnet biased bearingless switched reluctance motor," IEEE Trans. Ind. Electron., Vol. 61, No. 12, 4342-4347, Sep. 2013.

15. Wang, H., J. Liu, J. Bao, and B. Xue, "A novel bearingless switched reluctance motor with a biased permanent magnet," IEEE Trans. Ind. Electron., Vol. 61, No. 12, 6947-6955, Dec. 2014.
doi:10.1109/TIE.2014.2317144

16. Xue, B, H. Wang, and J. Bao, "Design of novel 12/14 bearingless permanent biased switched reluctance motor," IEEE International Conference on Electrical Machines and Systems, 2655-2660, Oct. 2014.

17. Wei, P., D. Lee, and J. Ahn, "Design and analysis of double stator type bearingless switched reluctance motor," Transactions of the Korean Institute of Electrical Engineers, Vol. 60, No. 4, 746-752, 2011.
doi:10.5370/KIEE.2011.60.4.746

18. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 113, Oct. 2017.

19. Chen, L. and W. Hofmann, "Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2592-2600, Jun. 2012.
doi:10.1109/TIE.2011.2163289

20. Cao, X. and Z. Deng, "A full-period generating mode for bearingless switched reluctance generators," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 1072-1076, Mar. 2010.
doi:10.1109/TASC.2010.2041206

21. Liu, J., X. Zhang, H. Wang, and J. Bao, "Iron loss characteristic for the novel bearingless switched reluctance motor," IEEE, 586-592, Oct. 2013.